Preview

Ambulatornaya khirurgiya = Ambulatory Surgery (Russia)

Advanced search

The use of scaffold technologies to optimize the healing of skin wounds

https://doi.org/10.21518/akh2025-044

Abstract

Chronic wound care and wound healing management are a global public health burden that accounts for approximately 3% of total healthcare expenditure. Current therapeutic strategies used by healthcare institutions struggle to effectively handle the wound treatment, which results in long-term hospital stays. The gravity of the situation is compounded by the continuous growth of risk factors associated with chronic wound development. Therefore, it is necessary to investigate the treatment solutions that can restart wound healing by targeting specific mechanisms involved in wound repair. The article discusses topical issues of the improvement of skin wound healing by using scaffolds. The authors provide a review of current advancements in skin tissue regeneration, highlighting scaffold technologies. Today, scaffold technologies is an essential tool in different areas of regenerative medicine. The efficiency of these technologies is undoubtedly associated with their specific mechanisms aimed at providing mechanical support to reproduce the potential wound defect scaffold. Assessment of such potential requires studying the reaction of recipient tissues to matrix integration in vivo and determining the patterns of collagen fiber formation. We have analysed data from foreign and domestic sources using the search engines PubMed® and elibrary.ru over the past years. The review covers a broad spectrum of issues ranging from general principles of wound healing to a detailed description of various types of scaffolds, addressing all the key aspects of scaffold technologies. Detailed review of different types of scaffolds, their composition, properties and benefits when used to improve skin regeneration mechanisms is provided.

About the Authors

M. M. Mironov
Penza State University
Russian Federation

Mikhail M. Mironov, Postgraduate Student of the Department of Surgery,

3, Lermontov St., Penza, 440000



K. I. Sergatskiy
Penza State University
Russian Federation

Konstantin I. Sergatskiy, Dr. Sci. (Med.), Associate Professor, Professor of Department of Surgery,

3, Lermontov St., Penza, 440000



V. I. Nikolsky
Penza State University
Russian Federation

Valery I. Nikolsky, Dr. Sci. (Med.), Professor, Professor of Department of Surgery,

3, Lermontov St., Penza, 440000



V. S. Romanova
Penza State University
Russian Federation

Valeria S. Romanova, Resident of Department of Surgery,

3, Lermontov St., Penza, 440000



A. V. Shabrov
Penza State University
Russian Federation

Alexandr V. Shabrov, Cand. Sci. (Med.), Associate Professor of Department of Surgery,

3, Lermontov St., Penza, 440000



A. D. Zakharov
Penza State University
Russian Federation

Artem D. Zakharov, Cand. Sci. (Med.), Associate Professor of Department of Surgery,

3, Lermontov St., Penza, 440000



References

1. Chuong CM, Nickoloff BJ, Elias PM, Goldsmith LA, Macher E, Maderson PA et al. What is the ‘true’ function of skin? Experimental Dermatology. 2022;11(2):159–187. https://doi.org/10.1034/j.1600-0625.2002.00112.x.

2. Sergackiy KI, Nikolskij VI, Sheremet DP, Aldzhabr M, Mizonov DV, SHabrov AV. Features of scaffolds and their manufacturing technology for using the regenerative surgery. Izvestiya Vysshih Uchebnyh Zavedenij. Povolzhskij Region. Medicinskie Nauki. 2022;(3):124–133. (In Russ.) https://doi.org/10.21685/2072-3032-2022-3-11.

3. Nikolskij VI, Sergackiy KI, Sheremet DP, Shabrov AV. Scaffold technologies in regenerative medicine: history of the issue, current state and prospects of application. Pirogov Journal of Surgery. 2022;(11):36–41. (In Russ.) https://doi.org/10.17116/hirurgia202211136.

4. Vangilder C, Lachenbruch C, Algrim-Boyle C, Meyer S. The International Pressure Ulcer Prevalence Survey: 2006-2015: A 10-Year Pressure Injury Prevalence and Demographic Trend Analysis by Care Setting. J Wound Ostomy Cont Nurs. 2017;44:20–28. https://doi.org/10.1097/ WON.0000000000000292

5. Vangilder C, Macfarlane GD, Meyer S. Results of nine international pressure ulcer prevalence surveys: 1989 to 2005. Ostomy Wound Manag. 2008;54(2):40–54. Available at: https://pubmed.ncbi.nlm.nih.gov/18382042.

6. Guo B, Ma PX. Conducting Polymers for Tissue Engineering. Biomacromolecules. 2018;19(6):1764–1782. https://doi.org/10.1021/acs.biomac.8b00276.

7. Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V et al. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int J Mol Sci. 2016;17(12):1974. https://doi.org/10.3390/ijms17121974.

8. Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463(2):127–136. https://doi.org/ 10.1016/j.ijpharm.2013.12.015.

9. Zielińska A, Karczewski J, Eder P, Kolanowski T, Szalata M, Wielgus K et al. Scaffolds for drug delivery and tissue engineering: The role of genetics. J Control Release. 2023;359:207–223. https://doi.org/10.1016/j.jconrel.2023.05.042

10. Mishina ES, Zatolokina MA, Ryazaeva LM, Pol’skoj VS, Cymbalyuk VV, Nevol’ko VO et al. Morphofunctional rebuilding of fibrous structures of rat’s skin dermis under 3d-scaffold implantation based on polyprolactone. Journal of Volgograd State Medical University. 2021;3(79):119–123. (In Russ.) https://doi.org/10.19163/1994-9480-2021-3(79)-119-123.

11. Epifanov SA, Matveev SA, Krainyukov PE, Kokorin VV, Bazaev AA, Chekmareva IA. Autological fibrin matrixs: prospect surgery use. Genes and Cells. 2021;16(2):71–74. (In Russ.) https://doi.org/10.23868/202107014.

12. Frazier T, Alarcon A, Wu X, Mohiuddin OA, Motherwell JM, Carlsson AH et al. Clinical Translational Potential in Skin Wound Regeneration for Adipose-Derived, Blood-Derived, and Cellulose Materials: Cells, Exosomes, and Hydrogels. Biomolecules. 2020;10(10):1373. https://doi.org/10.3390/biom1010137.

13. Egorihina MN, Levin GYа, Alejnik DYа, Charykova IN. Natural polymer-based scaffolds in the replacement of skin defects. 2018;138(3):273–282. (In Russ.) https://doi.org/10.7868/S0042132418030055.

14. Qin J, Chen F, Wu P, Sun G. Recent Advances in Bioengineered Scaffolds for Cutaneous Wound Healing. Front Bioeng Biotechnol. 2022;10:841583. https://doi.org/10.3389/fbioe.2022.841583.

15. Egorikhina MN, Mukhina PA, Bronnikova II. Scaffolds as drug and bioactive compound delivery systems. Complex Issues of Cardiovascular Diseases. 2020;9(1):92–102. (In Russ.) https://doi.org/10.17802/2306-1278-2020-9-1-92-102.

16. Mitchell AC, Briquez PS, Hubbell JA, Cochran JR. Engineering growth factors for regenerative medicine applications. Acta Biomater. 2016;30:1–12. https://doi.org/10.1016/j.actbio.2015.11.007.

17. Atienza-roca P, Cui X, Hooper GJ, Woodfield TBF, Lim KS. Growth factor delivery systems for tissue engineering and regenerative medicine. Adv Exp Med Biol. 2018;1078:245–269. https://doi.org/10.1007/978-981-13-0950-2.

18. Venkanna A, Kwon OW, Afzal S, Jang C, Cho KH, Yadav DK et al. Pharmacological use of a novel scaffold, anomeric N, Ndiarylamino tetrahydropyran: molecular similarity search, chemocentric target profiling, and experimental evidence. Sci Rep. 2017;7(1):1–17. https://doi.org/doi:10.1038/s41598-017-12082.

19. Nikolaeva ED. Biopolymers for Tissue Engineering. Journal of Siberian Federal University. Biology. 2014;7(2):222–233. (In Russ.) Available at: https://elib.sfu-kras.ru/handle/2311/13408.

20. Eltom AE, Zhong G, Muhammad A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Advances in Materials Science and Engineering. 2019;4:1–13. https://doi.org/10.1155/2019/3429527.

21. Iqbal N, Khan AS, Asif A, Yar M, Haycock JW, Rehman IU. Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review. Int Mat Rev. 2019;64:91–126. https://doi.org/10.1080/09506608.2018.1460943.

22. Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules. 2019;9(11):750. https://doi.org/10.3390/biom9110750.

23. Magnusson JP, Saeed AO, Fernández-Trillo F, Alexander C. Synthetic polymers for biopharmaceutical delivery. Polymer Chemistry. 2011;2(1):48–59. https://doi.org/10.1039/C0PY00210K.

24. Negut I, Dorcioman G, Grumezescu V. Scaffolds for Wound Healing Applications. Polymers. 2020;12(9):2010. https://doi.org/10.3390/polym12092010.

25. Sun G, Shen YI, Harmon JW. Engineering Pro-Regenerative Hydrogels for Scarless Wound Healing. Adv Healthc Mater. 2018;7(14):e1800016. https://doi.org/10.3390/polym1209201010.1002/adhm.201800016.

26. Ahmed S, Ikram S. Chitosan Based Scaffolds and Their Applications in Wound Healing. Achievements Life Sci. 2016;10:27–37. https://doi.org/ 10.1016/j.als.2016.04.001.

27. Graça MFP, Miguel SP, Cabral CSD, Correia IJ. Hyaluronic acid-Based wound dressings: A review. Carbohydr Polym. 2020;241:116364 https://doi.org/ 10.1016/j.carbpol.2020.116364.

28. Badylak SF, Freytes DO, Gilbert TW. Reprint of: Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2015;23:17–26. https://doi.org/10.1016/j.actbio.2015.07.016.

29. Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater. 2018;74:74–89. https://doi.org/10.1016/j.actbio.2018.04.044.

30. Agmon G, Christman KL. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci. 2016;20:193–201. https://doi.org/10.1016/j.cossms.2016.02.001.

31. Dziki J, Badylak S, Yabroudi M, Sicari B, Ambrosio F, Stearns K et al. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen Med. 2016;1:16008. https://doi.org/10.1038/npjregenmed.2016.8.

32. Clark RA, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007;127(5):1018–1029. https://doi.org/10.1038/sj.jid.5700715.

33. Zhang Q, Johnson JA, Dunne LW, Chen Y, Iyyanki T, Wu Y et al. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps. Acta Biomater. 2016;35:166–184. https://doi.org/10.1016/j.actbio.2016.02.017.

34. Choi JS, Kim JD, Yoon HS, Cho YW. Full-thickness skin wound healing using human placenta-derived extracellular matrix containing bioactive molecules. Tissue Eng Part A. 2013;19(3-4):329–339. https://doi.org/10.1089/ten.TEA.2011.0738.

35. Brouki Milan P, Pazouki A, Joghataei MT, Mozafari M, Amini N, Kargozar S et al. Decellularization and preservation of human skin: A platform for tissue engineering and reconstructive surgery. Methods. 2020;171:62–67. https://doi.org/10.1016/j.ymeth.2019.07.005.

36. Takami Y, Yamaguchi R, Ono S, Hyakusoku H. Clinical application and histological properties of autologous tissue-engineered skin equivalents using an acellular dermal matrix. J Nippon Med Sch. 2014;81(6):356–363. https://doi.org/10.1272/jnms.81.356.

37. Sotnichenko AS, Gilevich IV, Melkonian KI, Yutskevich YA, Karakulev AV, Bogdanov SB et al. Techniques for obtaining dermal extracellular matrix scaffold. Vestnik Transplantologii i Iskusstvennykh Organov. 2019;21(4):81–87. (In Russ.) https://doi.org/10.15825/1995-1191-2019-4-81-87.

38. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater. 2021;10:15–31. https://doi.org/10.1016/j.bioactmat.2021.09.014.

39. Mitroshin AN, Fedorova MG, Latynova IV, Nefedov AA. Modern ideas about the use of scaffolds in the regenerative medicine (literature review). Izvestiya Vysshih Uchebnyh Zavedenij. Povolzhskij Region. Medicinskie Nauki. 2019;(2):133–143. (In Russ.) https://doi.org/10.21685/2072-3032-2019-2-12.

40. Sundaramurthi D, Krishnan UM, Sethuraman S. Electrospun Nanofibers as Scaffolds for Skin Tissue Engineering. Polymer Reviews. 2014;54(2): 348–376. https://doi.org/10.1080/15583724.2014.881374.

41. Liu X, Lin T, Fang J, Yao G, Zhao H, Dodson M, Wang X. In vivo wound healing and antibacterial performances of electrospun nanofibre membranes. J Biomed Mater Res A. 2010;94(2):499–508. https://doi.org/10.1002/jbm.a.32718.

42. Akita S, Tanaka K, Hirano A. Lower extremity reconstruction after necrotising fasciitis and necrotic skin lesions using a porcine-derived skin substitute. JPRAS. 2006;59:759–763. https://doi.org/10.1016/j.bjps.2005.11.021.

43. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–258. https://doi.org/10.1098/rsif.2009.0403.

44. Suzuki S, Kawai K, Ashoori F, Morimoto N, Nishimura Y, Ikada Y. Long-term follow-up study of artificial dermis composed of outer silicone layer and inner collagen sponge. Br J Plast Surg. 2000;53(8):659–666. https://doi.org/10.1054/bjps.2000.3426.

45. Chen YH, Dong WR, Xiao YQ, Zhao BL, Hu GD, An LB. Preparation and bioactivity of human hair keratin-collagen sponge, a new type of dermal analogue. Nan Fang Yi Ke Da Xue Xue Bao. 2006;26(2):131–138. Available at: https://pubmed.ncbi.nlm.nih.gov/16503513.

46. Yeo JH, Lee KG, Kim HC, Oh HYL, Kim AJ, Kim SY. The effects of Pva/chitosan/fibroin (PCF)-blended spongy sheets on wound healing in rats. Biol Pharm Bull. 2000;23(10):1220–1223. https://doi.org/10.1248/bpb.23.1220.

47. Omelko NA, Khalimov RI. Composite matrixes for use in traumatology and regenerative medicine. Scientific Review. Medical Sciences. 2022;(6): 89–94. (In Russ.) https://doi.org/10.17513/srms.1309

48. Ivanov AA, Popova OP, Danilova TI, Kuznecova AV. Strategy of the selection and use of scaffolds in bioengineering. Uspekhi Sovremennoy Biologii. 2019;139(2):196–205. (In Russ.) https://doi.org/10.1134/S0042132419020042.

49. Norouzi M, Soleimani M, Shabani I, Atyabi F, Ahvaz HH, Rashidi A. Protein encapsulated in electrospun nanofibrous scaffolds for tissue engineering applications. Polymer International. 2013;62:1250–1256. https://doi.org/10.1002/pi.4416.

50. Bhattarai SR, Bhattarai N, Yi HK, Hwang PH, Cha DI, Kim HY. Novel biodegradable electrospun membrane: Scaffold for tissue engineering. Biomaterials. 2004;25(13):2595–2602. https://doi.org/10.1016/j.biomaterials.2003.09.043.

51. Hong Y, Chen X, Jing X, Fan H, Gu Z, Zhang X. Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers. Adv Funct Mater. 2010;20:1503–1510. https://doi.org/10.1002/adfm.200901627.

52. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int J Polym Sci. 2011;2011:1–19. https://doi.org/10.1155/2011/290602.

53. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27. https://doi.org/10.1016/j.addr.2015.11.001.

54. Starceva OI, Sinel’nikov ME, Babaeva YuV. Decellularization of organs and tissues. Pirogov Journal of Surgery. 2019;(8):59‒62. (In Russ.) https://doi.org/10.17116/hirurgia201908159.

55. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17:467–479. https://doi.org/10.1007/s00586-008-0745-3.

56. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941–2953. https://doi.org/10.1016/j.biomaterials.2008.04.023.

57. Bobbert FSL, Zadpoor AA. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone. J Mater Chem B. 2017;5(31):6175–6192. https://doi.org/10.1039/c7tb00741h.

58. Xiao H, Chen X, Liu X, Wen G, Yu Y. Recent advances in decellularized biomaterials for wound healing. Mater Today Bio. 2023;19:100589. https://doi.org/10.1016/j.mtbio.2023.100589.

59. Bacakova L, Pajorova J, Zikmundova M, Filova E, Mikes P, Jencova V, Sinica A. Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Nature-Derived Polymers. Current and Future Aspects of Nanomedicine. IntechOpen. 2020. https://doi.org/10.5772/intechopen.88602. 60. Belviso I, Romano V, Sacco AM, Ricci G, Massai D, Cammarota M et al. Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration. Front Bioeng Biotechnol. 2020;8:229. https://doi.org/10.3389/fbioe.2020.00229.

60. Bramfeldt H, Sabra G, Centis V, Vermette P. Scaffold vascularization: a challenge for three-dimensional tissue engineering. Curr Med Chem. 2010;17(33):3944–3967. https://doi.org/10.2174/092986710793205327.

61. Nikolskij VI, Zaharov AD, Shabrov AV, Venediktov AA, Glumskova YuA. Studying the oxidative stress dynamics in conditions of wound healing during implantation of an extracellular collagen matrix. Izvestiya Vysshih Uchebnyh Zavedenij. Povolzhskij Region. Medicinskie nauki. 2023;(4):65–75. (In Russ.) https://doi.org/10.21685/2072-3032-2023-4-7.

62. Zaharov AD, Nikol’skij VI, Sergackiy KI, Mitroshin AN, Mironov MM. Extracellular collagen matrix in the treatment of chronic wounds in patients with diabetic foot syndrome. Izvestiya Vysshih Uchebnyh Zavedenij. Povolzhskij Region. Medicinskie Nauki. 2024;(1):68–75. (In Russ.) https://doi.org/10.21685/2072-3032-2024-1-8.


Review

For citations:


Mironov M.M., Sergatskiy K.I., Nikolsky V.I., Romanova V.S., Shabrov A.V., Zakharov A.D. The use of scaffold technologies to optimize the healing of skin wounds. Ambulatornaya khirurgiya = Ambulatory Surgery (Russia). 2025;22(2):234-242. (In Russ.) https://doi.org/10.21518/akh2025-044

Views: 29


ISSN 2712-8741 (Print)
ISSN 2782-2591 (Online)