Percutaneous laser coagulation: Clinical experience in using Magic Super Full laser system
https://doi.org/10.21518/akh2025-060
Abstract
In this paper, the authors illustrate potential options of the Magic Super Full multifunctional laser system using clinical case reports as an example. This system was designed to correct intradermal vascular anomalies of different localizations and to address a wide range of aesthetic defects. The timeliness of this topic is caused by both medical and economic considerations. The number of patients presenting with complaints of superficial vascular defects that cause aesthetic discomfort is increasing, while the availability of their efficient correction options using advanced laser technologies is limited. Furthermore, until recently, aesthetic laser medicine was dominated by expensive European and American systems with high operating costs and expensive consumables, which also was a limiting factor for this procedure. It is now recognized that the long pulse 1064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) laser systems demonstrate the best results in the correction of superficial vascular anomalies. This wavelength provides high selectivity for hemoglobin and its derivatives, due to which Nd:YAG lasers came under a denomination “vascular lasers”. In this article, we examine the general principles of using long pulse Nd:YAG lasers in aesthetic angiology and evaluate the efficacy and safety of domestic Magic Super Full multifunctional system using specific examples.
About the Authors
V. Yu. BogachevRussian Federation
Vadim Yu. Bogachev, Dr. Sci. (Med.), Professor, Scientific Supervisor,
31, Dmitry Ulyanov St., Moscow, 117447
D. A. Borsuk
Kazakhstan
Denis A. Borsuk, Dr. Sci. (Med.), Assistant of the Department of Surgery, Institute of Continuing Professional Education, 64, Vorovskiy St., Chelyabinsk, 454092;
Professor, 51/53, Abylay Khan St., Almaty, 050004
K. V. Shatilova
Russian Federation
Ksenia V Shatilova, Cand. Sci. (Eng.), Head of the Department of Medical Laser Technologies,
11D, Igumnovskoe Shosse, Dzerzhinsk, Nizhny Novgorod Region, 606000
O. A. Alukhanyan
Russian Federation
Ovik A. Alukhanyan, Dr. Sci. (Med.), Professor of the Department of Cardiac Surgery and Cardiology, Faculty of Vocational Education and Professional Retraining of Specialists,
4, Mitrofan Sedin St., Krasnodar, 350063
S. D. Gefter
Russian Federation
Sofia D. Gefter, Master of Biology, Junior Researcher of the Department of Medical Laser Technologies, 11D, Igumnovskoe Shosse, Dzerzhinsk, Nizhny Novgorod Region, 606000;
Postgraduate Student, 23, Bldg. 1, Gagarin Ave., Nizhny Novgorod, 603950,
References
1. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37–R61. https://doi.org/10.1088/0031-9155/58/11/R37.
2. Kuenstner JT, Norris KH. Spectrophotometry of Human Hemoglobin in the near Infrared Region from 1000 to 2500 nm. J Near Infrared Spectrosc. 1994;2(2):59–65. https://doi.org/10.1255/jnirs.32.
3. Coles CM, Werner RS, Zelickson BD. Comparative pilot study evaluating the treatment ofleg veins with along pulse ND:YAG laser and sclerotherapy. Lasers Surg Med. 2002;30(2):154–159. https://doi.org/10.1002/lsm.10028.
4. Levy JL, Elbahr C, Jouve E, Mordon S. Comparison and sequential study oflong pulsed Nd:YAG 1,064 nm laser and sclerotherapy inleg telangiectasias treatment. Lasers Surg Med. 2004;34(3):273–276. https://doi.org/10.1002/lsm.20010.
5. Munia MA, Wolosker N, Munia CG, Chao WS, Puech-Leão P. Comparison oflaser versus sclerotherapy in the treatment oflower extremity telangiectases: a prospective study. Dermatol Surg. 2012;38(4):635–639. https://doi.org/10.1111/j.1524-4725.2011.02226.x.
6. Meesters AA, Pitassi LH, Campos V, Wolkerstorfer A, Dierickx CC. Transcutaneous laser treatment ofleg veins. Lasers Med Sci. 2014;29(2):481–492. https://doi.org/10.1007/s10103-013-1483-2.
7. Ianosi G, Ianosi S, Calbureanu-Popescu MX, Tutunaru C, Calina D, Neagoe D. Comparative study inleg telangiectasias treatment with Nd:YAG laser and sclerotherapy. Exp Ther Med. 2019;17(2):1106–1112. https://doi.org/10.3892/etm.2018.6985.
8. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220(4596):524–527. https://doi.org/10.1126/science.6836297.
9. Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Physi D Appl Phys. 2005;38(15):2543. https://doi.org/10.1088/0022-3727/38/15/004.
10. Bäumler W, Ulrich H, Hartl A, Landthaler M, Shafirstein G. Optimal parameters for the treatment ofleg veins using Nd:YAG lasers at 1064 nm. Br J Dermatol. 2006;155(2):364–371. https://doi.org/10.1111/j.1365-2133.2006.07314.x.
11. Parlette EC, Groff WF, Kinshella MJ, Domankevitz Y, O’Neill J, Ross EV. Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser. Lasers Surg Med. 2006;38(2):98–105. https://doi.org/10.1002/lsm.20245.
12. Ozyurt K, Colgecen E, Baykan H, Ozturk P, Ozkose M. Treatment ofsuperficial cutaneous vascular lesions: experience with thelong-pulsed 1064 nm Nd:YAG laser. ScientificWorldJournal. 2012;2012:197139. https://doi.org/10.1100/2012/197139.
13. Murphy MJ, Torstensson PA. Thermal relaxation times: an outdated concept in photothermal treatments. Lasers Med Sci. 2014;29(3):973–978. https://doi.org/10.1007/s10103-013-1445-8.
14. Nelson JS, Milner TE, Svaasand LO, Kimel S. Laser pulse duration must match the estimated thermal relaxation time forsuccessful photothermolysis of blood vessels. Laser Med Sci. 1995;10(1):9–12. https://doi.org/10.1007/BF02133157.
15. Ash C, Dubec M, Donne K, Bashford T. Effect of wavelength and beam width on penetration inlight-tissue interaction using computational methods. Laser Med Sci. 2017;32(8):1909–1918. https://doi.org/10.1007/s10103-017-2317-4.
16. Lukač M, Grad L, Nemeš K. Scanner optimized efficacy (SOE) hair removal with the VSP Nd: YAG lasers. J Laser Health Acad. 2007;(3):1–6. Available at: https://www.fotona.com/media/products/literature/doc/LH_Academy_2007_3_Scanner_Optimized_Hair_Removal.pdf.
17. Mordon S, Brisot D, Fournier N. Using a “non uniform pulse sequence” can improve selective coagulation with a Nd:YAG laser (1.06 microm) thanks to Met-hemoglobin absorption: a clinical study on blue leg veins. Lasers Surg Med. 2003;32(2):160–170. https://doi.org/10.1002/lsm.10135.
18. Black JF, Wade N, Barton JK. Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm. Lasers Surg Med. 2005;36(2):155–165. https://doi.org/10.1002/lsm.20134.
19. Petrikov AS. Use of the neodymium long-pulse 1064 nm laser in phlebology: capabilities and initial experience. Scientist. 2023;23(1):50–56. (In Russ.) Available at: https://thescientist.ru/wp-content/uploads/50-56ПЕТРИКОВ.pdf.
20. Volkov AS, Dibirov MD, Shimanko AI, Rybakov GS, Tsuranov SV, Tyurin DS et al. Laser Percutaneous Photocoagulation of Facial and Lower Extremities Telangiectasia. Flebologiya. 2019;13(1):52–59. (In Russ.) https://doi.org/10.17116/flebo20191301152.
21. Kruglova LS, Zhukova OV, Mimov AV, Pomerantsev ON, Shustov SA. Correction of Telangiectasias Using Modern Laser Technologies. Journal of Postgraduate Medical Education. 2013;(1):20–26. (In Russ.) Available at: https://elibrary.ru/rgqvxl.
Review
For citations:
Bogachev V.Yu., Borsuk D.A., Shatilova K.V., Alukhanyan O.A., Gefter S.D. Percutaneous laser coagulation: Clinical experience in using Magic Super Full laser system. Ambulatornaya khirurgiya = Ambulatory Surgery (Russia). 2025;22(2):36-45. (In Russ.) https://doi.org/10.21518/akh2025-060
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International.





















