Preview

Ambulatornaya khirurgiya = Ambulatory Surgery (Russia)

Advanced search

Osteoarthrosis of the knee joints or varicose veins of the lower extremities: Which comes first?

https://doi.org/10.21518/akh2024-038

Abstract

Osteoarthritis of the knee joints and varicose veins of the lower extremities are two common diseases that quite often occur in combination in patients. What pathology is primary? This is an important issue for specialists, since specialized treatment is provided in different surgical departments and often without correction of the venous outflow there is no possibility of surgical treatment of the knee joint. Based on the literature and personal experience, we have established a possible connection between these two diseases with an attempt to determine which of them will be the root cause. The literature analysis was carried out using Elsevier, PubMed, eLibrary, PLOS and Cyberleninka databases. Articles containing the keywords: osteoarthritis, gonarthrosis, varicose veins, lower extremities, knee joint, venous congestion were analyzed. English and Russian full-text articles, literature reviews, systemic reviews, meta-analyses, cohort studies, and traditional reviews with a search depth of no more than 35 years were studied. It has been established that the most widespread theory is one that identifies varicose veins of the lower extremities as the root cause of osteoarthritis of the knee joint. In our opinion, both diseases should not be considered as the root cause. The presence of one pathology may aggravate the clinical picture of another. Having conducted a single-center randomized prospective study in 40 patients with varicose veins of the lower extremities, we found that 24 of them, with clinical manifestations of osteoarthritis of the knee joint, were diagnosed with clinical classes of varicose veins C3–C5 according to CEAP.

About the Authors

G. V. Yarovenko
Samara State Medical University
Russian Federation

Galina V. Yarovenko, Dr. Sci. (Med.), Professor of the Department of Hospital Surgery

89, Chapaevskaya St., Samara, 443089, Russia 



S. E. Katorkin
Samara State Medical University
Russian Federation

Sergey E. Katorkin, Dr. Sci. (Med.), Professor, Head of the Department and Clinic of Hospital Surgery

89, Chapaevskaya St., Samara, 443089, Russia 



E. V. Smagin
Samara State Medical University
Russian Federation

Egor V. Smagin, Clinical Resident of the Department of Surgery with a Course in Cardiovascular Surgery of the Institute of Postgraduate Education 

89, Chapaevskaya St., Samara, 443089, Russia 



A. E. Koltsov
Samara State Medical University
Russian Federation

Anton E. Koltsov, Clinical Resident of the Department of Surgery with a Course in Cardiovascular Surgery of the Institute of Postgraduate Education 

89, Chapaevskaya St., Samara, 443089, Russia 



References

1. Jin Y, Xu G, Huang J, Zhou D, Huang X, Shen L. Analysis of the association between an insertion/deletion polymorphism within the 3’ untranslated region of COL1A2 and chronic venous insufficiency. Ann Vasc Surg. 2013;27(7):959–963. https://doi.org/10.1016/j.avsg.2013.04.001.

2. Shadrina A, Tsepilov Y, Sokolova E, Smetanina M, Voronina E, Pakhomov E et al. Genome-wide association study in ethnic Russians suggests an association of the MHC class III genomic region with the risk of primary varicose veins. Gene. 2018;659:93–99. https://doi.org/10.1016/j.gene.2018.03.039.

3. Bharath V, Kahn SR, Lazo-Langner A. Genetic polymorphisms of vein wall remodeling in chronic venous disease: a narrative and systematic review. Blood. 2014;124(8):1242–1250. https://doi.org/10.1182/blood-2014-03-558478.

4. Shadrina AS, Zolotukhin IA, Filipenko ML. Molecular Mechanisms Underlying the Development of Varicose Veins of Low Extremities. Flebologiia. 2017;11(2):71–75. (In Russ.) https://doi.org/10.17116/FLEBO201711271-75.

5. Shadrina AS, Smetanina MA, Sokolova EA, Sevost’ianova KS, Shevela AI, Demekhova MY et al. Association of polymorphisms near the FOXC2 gene with the risk of varicose veins in ethnic Russians. Phlebology. 2016;31(9):640–648. https://doi.org/10.1177/0268355515607404.

6. Bergan J. Molecular mechanisms in chronic venous insufficiency. Ann Vasc Surg. 2007;21(3):260–266. https://doi.org/10.1016/j.avsg.2007.03.011.

7. Pascarella L, Schönbein GW, Bergan JJ. Microcirculation and venous ulcers: a review. Ann Vasc Surg. 2005;19(6):921–927. https://doi.org/10.1007/s10016-005-7661-3.

8. Fitts MK, Pike DB, Anderson K, Shiu YT. Hemodynamic Shear Stress and Endothelial Dysfunction in Hemodialysis Access. Open Urol Nephrol J. 2014;7(Suppl. 1):33–44. https://doi.org/10.2174/1874303X01407010033.

9. Anwar MA, Shalhoub J, Lim CS, Gohel MS, Davies AH. The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J Vasc Res. 2012;49(6):463–478. https://doi.org/10.1159/000339151.

10. Perrin M, Ramelet AA. Pharmacological treatment of primary chronic venous disease: rationale, results and unanswered questions. Eur J Vasc Endovasc Surg. 2011;41(1):117–125. https://doi.org/10.1016/j.ejvs.2010.09.025.

11. Nicolaides AN. Chronic venous disease and the leukocyte-endothelium interaction: from symptoms to ulceration. Angiology. 2005;56(Suppl. 1):S11–S19. https://doi.org/10.1177/00033197050560i103.

12. Elsharawy MA, Naim MM, Abdelmaguid EM, Al-Mulhim AA. Role of saphenous vein wall in the pathogenesis of primary varicose veins. Interact Cardiovasc Thorac Surg. 2007;6(2):219–224. https://doi.org/10.1510/icvts.2006.136937.

13. Mironiuc A, Palcau L, Andercou O, Rogojan L, Todoran M, Gordan G. Clinico-histopathological correlations of venous wall modifications in chronic venous insufficiency. Chirurgia (Bucur). 2008;103(3):309–312. Available at: https://pubmed.ncbi.nlm.nih.gov/18717280/.

14. Aunapuu M, Arend A. Histopathological changes and expression of adhesion molecules and laminin in varicose veins. Vasa. 2005;34(3):170–175. https://doi.org/10.1024/0301-1526.34.3.170.

15. Stücker M, Krey T, Röchling A, Schultz-Ehrenburg U, Altmeyer P. The histomorphologic changes at the saphenofemoral junction in varicosis of the greater saphenous vein. Vasa. 2000;29(1):41–46. https://doi.org/10.1024/0301-1526.29.1.41.

16. Pascual G, Mendieta C, Mecham RP, Sommer P, Bellón JM, Buján J. Down-regulation of lysyl oxydase-like in aging and venous insufficiency. Histol Histopathol. 2008;23(2):179–186. https://doi.org/10.14670/HH-23.179.

17. Renno WM, Saleh F, Wali M. A journey across the wall of varicose veins: What physicians do not often see with the naked eye. Med Princ Pract. 2005;15(1):9–23. https://doi.org/10.1159/000089380.

18. Xiao Y, Huang Z, Yin H, Lin Y, Wang S. In vitro differences between smooth muscle cells derived from varicose veins and normal veins. J Vasc Surg. 2009;50(5):1149–1154. https://doi.org/10.1016/j.jvs.2009.06.048.

19. Haviarova Z, Janega P, Durdik S, Kovac P, Mraz P, Stvrtinova V. Comparison of collagen subtype I and III presence in varicose and nonvaricose vein walls. Bratisl Lek Listy. 2008;109(3):102–105. Available at: https://www.researchgate.net/publication/5334227_Comparison_of_collagen_subtype_I_and_III_presence_in_varicose_and_non-varicose_vein_walls.

20. Sansilvestri-Morel P, Fioretti F, Rupin A, Senni K, Fabiani JN, Godeau G, Verbeuren TJ. Comparison of extracellular matrix in skin and saphenous veins from patients with varicose veins: does the skin reflect venous matrix changes? Clin Sci (Lond). 2007;112(4): 229–239. https://doi.org/10.1042/CS20060170.

21. Porciunculla MM, Leiderman DBD, Altenfeder R, Pereira CSB, Fioranelli A, Wolosker N, Castelli Junior V. Clinical, ultrasonographic and histological findings in varicose vein surgery. Rev Assoc Med Bras (1992). 2018;64(8):729–735. https://doi.org/10.1590/1806-9282.64.08.729.

22. Wali MA, Eid RA. Smooth muscle changes in varicose veins: an ultrastructural study. J Smooth Muscle Res. 2001;37(6):123–135. https://doi.org/10.1540/jsmr.37.123.

23. Bergan JJ, Schmid-Schönbein GW, Coleridge Smith PD, Nicolaides AN, Boisseau MR, Eklof B. Chronic venous disease. Minerva Cardioangiol. 2007;55(4):459–476. Available at: https://www.researchgate.net/publication/6185827_Chronic_venous_disease.

24. Peschen M, Lahaye T, Hennig B, Weyl A, Simon JC, Vanscheidt W. Expression of the adhesion molecules ICAM-1, VCAM-1, LFA-1 and VLA-4 in the skin is modulated in progressing stages of chronic venous insufficiency. Acta Derm Venereol. 1999;79(1):27–32. https://doi.org/10.1080/000155599750011651.

25. Kim BC, Kim HT, Park SH, Cha JS, Yufit T, Kim SJ, Falanga V. Fibroblasts from chronic wounds show altered TGF-beta-signaling and decreased TGF-beta Type II receptor expression. J Cell Physiol. 2003;195(3):331–336. https://doi.org/10.1002/jcp.10301.

26. Broszczak DA, Sydes ER, Wallace D, Parker TJ. Molecular Aspects of Wound Healing and the Rise of Venous Leg Ulceration: Omics Approaches to Enhance Knowledge and Aid Diagnostic Discovery. Clin. Biochem. Rev. 2017;38(1):35–55. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548371/.

27. Raffetto J, Khalil R Matrix Metalloproteinases in Venous Tissue Remodeling and Varicose Vein Formation. Curr Vasc Pharmacol. 2008;6(3):158–172. https://doi.org/10.2174/157016108784911957.

28. Yarovenko GV, Katorkin SE, Komleva YM, Osadchaya PV. The effect of the A82G mutation in the MMP-12 gene and C634G mutation in the VEGF-A gene on the course of lower limb varicose veins and the risk of disease recurrence. Bulletin of the Medical Institute “REAVIZ”: Rehabilitation, Doctor, and Health. 2023;13(5):56–62. (In Russ.) https://doi.org/10.20340/vmi-rvz.2023.5.CLIN.3.

29. Lim C, Shalhoub J, Gohel M, Shepherd A, Davies A. Matrix Metalloproteinases in Vascular Disease – A Potential Therapeutic Target? Curr Vasc Pharmacol. 2010;8(1):75–85. https://doi.org/10.2174/157016110790226697.

30. Stanley AC, Park HY, Phillips TJ, Russakovsky V, Menzoian JO. Reduced growth of dermal fibroblasts from chronic venous ulcers can be stimulated with growth factors. J Vasc Surg. 1997;26(6):994–1001. https://doi.org/10.1016/s0741-5214(97)70012-0.

31. Yasim A, Kilinc M. Serum concentration of procoagulant, endothelial and oxidative stress markers in early primary varicose veins. Phlebology. 2008;23(1):15–20. https://doi.org/10.1258/phleb.2007.007014.

32. Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol. 2002;39(4–5): 225–237. https://doi.org/10.1016/s1537-1891(03)00011-9.

33. Hosoi Y, Zukowski A, Kakkos SK, Nicolaides AN. Ambulatory venous pressure measurements: new parameters derived from a mathematic hemodynamic model. J Vasc Surg. 2002;36(1):137–142. https://doi.org/10.1067/mva.2002.124622.

34. Al-Omari WRS. The Association between Osteoarthritis of the Knee Joint and Chronic Venous Insufficiency of the Legs. Bahrain Med Bull. 2012;34(1). Available at: https://www.bahrainmedicalbulletin.com/march_2012/The_association.pdf.

35. Findlay DM. Vascular pathology and osteoarthritis. Rheumatology. 2007;46(12):1763–1768. https://doi.org/10.1093/rheumatology/kem191.

36. Cao TN, Nguyen CT, Nguyen MD. The association between chronic venous disease and knee osteoarthritis. Eur Rev Med Pharmacol Sci. 2023;27(7):2899–2907. https://doi.org/10.26355/eurrev_202304_31921.

37. Brandi ML, Collin-Osdoby P. Vascular biology and the skeleton. J Bone Miner Res. 2006;21(2):183–192. https://doi.org/10.1359/JBMR.050917.

38. Massicotte F, Aubry I, Martel-Pelletier J, Pelletier JP, Fernandes J, Lajeunesse D. Abnormal insulin-like growth factor 1 signaling in human osteoarthritic subchondral bone osteoblasts. Arthritis Res Ther. 2006;8(6):R177. https://doi.org/10.1186/ar2087.

39. Ortega MA, Fraile-Martínez O, García-Montero C, Ruiz-Grande F, Barrena S, Montoya H et al. Chronic venous disease patients show increased IRS-4 expression in the great saphenous vein wall. J Int Med Res. 2021;49(9):03000605211041275. https://doi.org/10.1177/03000605211041275.

40. Shcheglov EA, Vezikova NN. Features of clinics in combined osteoarthritis of the knee and lower limb vein diseases. Modern Problems of Science and Education. 2012;(1). (In Russ.) Available at: https://science-education.ru/ru/article/view?id=5482.

41. Salikhov IG, Lapshina SA, Miasoutova LI, Kirillova ER, Mukhina RG. Osteoarthrosis and peripheral vein diseases of lower extremities: characteristics of concomitant pathology. Terapevticheskii Arkhiv. 2010;82(5):58–60. (In Russ.) Available at: https://ter-arkhiv.ru/0040-3660/article/view/30609.

42. Dubrovin GM, Kovalyov PV. Revascularizing and Decompressive Effect of subchondral spongiosotomy with muscle implantation in deforming gonarthrosis (experimental study). N.N. Priorov Journal of Traumatology and Orthopedics. 2004;11(1):57–60. (In Russ.) https://doi.org/10.17816/vto200411157-60.

43. Liang Q, Ju Y, Chen Y, Wang W, Li J, Zhang L et al. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice. Arthritis Res Ther. 2016;18:62. https://doi.org/10.1186/s13075-016-0963-8.

44. Shi J, Liang Q, Zuscik M, Shen J, Chen D, Xu H et al. Distribution and alteration of lymphatic vessels in knee joints of normal and osteoarthritic mice. Arthritis Rheumatol. 2014;66(3):657–666. https://doi.org/10.1002/art.38278.

45. Li J, Kuzin I, Moshkani S, Proulx ST, Xing L, Skrombolas D et al. Expanded CD23(+)/CD21(hi) B cells in inflamed lymph nodes are associated with the onset of inflammatory-erosive arthritis in TNF-transgenic mice and are targets of anti-CD20 therapy. J Immunol. 2010;184(11):6142–6150. https://doi.org/10.4049/jimmunol.0903489.

46. Wang L, Fritton SP, Weinbaum S, Cowin SC. On bone adaptation due to venous stasis. J Biomech. 2003;36(10):1439–1451. https://doi.org/10.1016/s0021-9290(03)00241-0.

47. Onoprienko GA, Voloshin VP. Сurrent concepts in physiological and reparative osteogenesis. Almanac of Clinical Medicine. 2017;45(2): 79–93. (In Russ.) https://doi.org/10.18786/2072-0505-2017-45-2-79-79.

48. Kelly PJ, Bronk JT. Venous pressure and bone formation. Microvasc Res. 1990;39(3):364–375. https://doi.org/10.1016/0026-2862(90)90049-w.

49. Oga Y, Sugiyama S, Matsubara S, Inaki Y, Matsunaga M, Shindo A. The Effectiveness of Endovenous Thermal Ablation for the Knee Symptoms of the Osteoarthritis with Varicose Veins. Ann Vasc Dis. 2021;14(2):108–111. https://doi.org/10.3400/avd.oa.21-00016.

50. Bassiouni H, Zaki K, Elshorbagi M, Mustapha A, Tantawi R, Ali H et al. Relating bone marrow oedema to hs-CRP in knee osteoarthritis. Indian J Rheumatol. 2010;5(1):11–15. https://doi.org/10.1016/S0973-3698(10)60530-4.

51. Kotelnikov GP, Losev II, Sizonenko YV, Katorkin SE. Peculiarities of diagnostics and treatment tactics of patients with combined lesion of the musculoskeletal and venous systems of the lower limbs. Novosti Khirurgii. 2013;21(3):42–53. (In Russ.) Available at: https://www.elibrary.ru/qbncjd.

52. Madry H, Luyten FP, Facchini A. Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2012;20(3):407–422. https://doi.org/10.1007/s00167-011-1705-8.

53. Guilak F. Review Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol. 2011;25(6):815–823. https://doi.org/10.1016/j.berh.2011.11.013.

54. Pulsatelli L, Addimanda O, Brusi V, Pavloska B, Meliconi R. New findings in osteoarthritis pathogenesis: therapeutic implications. Ther Adv Chronic Dis. 2013;4(1):23–43. https://doi.org/10.1177/2040622312462734.

55. Bay-Jensen AC, Hoegh-Madsen S, Dam E, Henriksen K, Sondergaard BC, Pastoureau P et al. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int. 2010;30(4):435–442. https://doi.org/10.1007/s00296-009-1183-1.

56. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072. https://doi.org/10.1038/nrdp.2016.72.

57. Pelletier JP, Martel-Pelletier J, Abramson SB. Review Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001;44(6):1237–1247. https://doi.org/10.1002/1529-0131(200106)44:6<1237::AIDART214>3.0.CO;2-F.

58. Quinn TM, Allen RG, Schalet BJ, Perumbuli P, Hunziker EB. Matrix and cell injury due to sub-impact loading of adult bovine articular cartilage explants: effects of strain rate and peak stress. J Orthop Res. 2001;19(2):242–249. https://doi.org/10.1016/S0736-0266(00)00025-5.

59. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ. Osteoarthritis. Lancet. 2015;386(9991):376–387. https://doi.org/10.1016/S0140-6736(14)60802-3.

60. Schroeppel JP, Crist JD, Anderson HC, Wang J. Review Molecular regulation of articular chondrocyte function and its significance in osteoarthritis. Histol Histopathol. 2011;26(3):377–394. https://doi.org/10.14670/HH-26.377.

61. Birchfield PC. Osteoarthritis overview. Geriatr Nurs. 2001;22(3):124–130. https://doi.org/10.1067/mgn.2001.116375.

62. Mobasheri A. Role of chondrocyte death, hypocellularity in ageing human articular cartilage, the pathogenesis of osteoarthritis. Med Hypothes. 2002;58(3):193–197. https://doi.org/10.1054/mehy.2000.1180.

63. Coggon D, Reading I, Croft P, McLaren M, Barrett D, Cooper C. Knee osteoarthritis and obesity. Int J Obes Relat Metab Disord. 2001;25(5):622–627. https://doi.org/10.1038/sj.ijo.0801585.

64. Nasonova VA. Osteoarthritis is a problem of polymorbidity. Consilium Medicum. 2009;11(2):5–8. (In Russ.) Available at: https://consilium.orscience.ru/2075-1753/article/view/92842.

65. Nematzoda O, Gaibov AD, Kurbanov SKh, Toshpulotov KhA, Ali-Zade SG, Baratov AK. The role of knee osteoarthritis in the development of varicose veins in the lower extremities. Avicenna Bulletin. 2022;24(2):193–203. (In Russ.) https://doi.org/10.25005/2074-0581-2022-24-2-193-203.

66. Syniachenko YuO, Samoilenko GYe, Syniachenko OV. Influence of gonarthrosis on the clinical course and treatment efficiency of varicose vein of lower limb. Trauma. 2017;18(1):63–67. (In Russ.) https://doi.org/10.22141/1608-1706.1.18.2017.95591.

67. Güneş S, Şehim K, Cüneyt K, Gökmen D, Küçükdeveci AA. Is there a relationship between venous insufficiency and knee osteoarthritis? Turk J Phys Med Rehabil. 2020;66(1):40–46. https://doi.org/10.5606/tftrd.2020.5110.

68. MakushinVD, Chegourov OK. The technique of gonarthrosis index estimation and its treatment effectiveness. Genij Ortopedii. 2007;(2): 9–13. (In Russ.) Available at: https://cyberleninka.ru/article/n/metodika-indeksnoy-otsenki-gonartroza-i-effektivnosti-ego-lecheniya.

69. Khodzhanov IYu, Mamasoliev BM, Tkachenko AN. Is lower extremity vein pathology a risk factor for the development of osteoarthritis of the knee joint? Ural Medical Journal. 2022;21(2):19–25. (In Russ.) https://doi.org/10.52420/2071-5943-2022-21-2-19-25.

70. Stvrtinova V, Jahnova E, Weissova S, Horvathova M, Ferencik M. Inflammatory mechanisms involving neutrophils in chronic venous insufficiency of lower limbs. Bratisl Lek Listy. 2001;102(5):235–239. Available at: https://www.researchgate.net/publication/11631182_Inflammatory_mechanisms_involving_neutrophils_in_chronic_venous_insufficiency_of_lower_limbs.

71. Aleksenko EU, Govorin AV, Tsvinger SM. Inflammatory markers in patients with osteoarthritis and arterial hypertension. Medical Immunology (Russia). 2010;12(4-5):429–432. (In Russ.) https://doi.org/10.15789/1563-0625-2010-4-5-429-432.

72. Khamidov OA, Ataeva SK, Nurmurzaev ZN. Pathology of lower extremity veins in osteoarthritis of knee joints. ARES. 2022;3(5):964–976. Available at: https://ares.uz/storage/app/uploads/public/629/a3f/2f6/629a3f2f695be909244556.pdf.

73. Rahman MM, Kopec JA, Anis AH, Cibere J, Goldsmith CH. Risk of cardiovascular disease in patients with osteoarthritis: a prospective longitudinal study. Arthritis Care Res. 2013;65(12):1951–1958. https://doi.org/10.1002/acr.22092.

74. Zeng C, Bennell K, Yang Z, Nguyen UDT, Lu N, Wei J et al. Risk of venous thromboembolism in knee, hip and hand osteoarthritis: a general population-based cohort study. Ann Rheum Dis. 2020;79(12):1616–1624. https://doi.org/10.1136/annrheumdis-2020-217782.

75. Pfisterer L, König G, Hecker M, Korff T. Pathogenesis of varicose veins – lessons from biomechanics. Vasa. 2014;43(2):88–99. https://doi.org/10.1024/0301-1526/a000335.

76. Lim CS, Davies AH. Pathogenesis of primary varicose veins. Br J Surg. 2009;96(11):1231–1242. https://doi.org/10.1002/bjs.6798.

77. Slovacek H, Khanna R, Poredos P, Poredos P, Jezovnik M, Hoppensteadt D et al. Interrelationship of MMP-9, Proteoglycan-4, and Inflammation in Osteoarthritis Patients Undergoing Total Hip Arthroplasty. Clin Appl Thromb Hemost. 2021;27:1076029621995569. https://doi.org/10.1177/1076029621995569.

78. Jacob MP, Cazaubon M, Scemama A, Prié D, Blanchet F, Guillin MC, Michel JB. Plasma matrix metalloproteinase-9 as a marker of blood stasis in varicose veins. Circulation. 2002;106(5):535–538. https://doi.org/10.1161/01.cir.0000027521.83518.4c.

79. Tsukanov YuT, Tsukanov AYu. Varicosis of the lower extremities as a consequence of connective tissue dysplasia. Angiology and Vascular Surgery. 2004;10(2):84–89 (In Russ.) Available at: https://www.angiolsurgery.org/magazine/2004/2/13.htm.

80. Naumov AV, Shamuilova MM, Kotselapova AU. Osteoarthrosis in modern clinical practice: analysis of factors and recommendations. Therapist. 2009;(11):4–15. (In Russ.) Available at: https://www.elibrary.ru/rtnyqp.

81. Ghosh P, Cheras PA. Vascular mechanisms in osteoarthritis. Best Pract Res Clin Rheumatol. 2001;15(5):693–709. https://doi.org/10.1053/berh.2001.0188.


Review

For citations:


Yarovenko G.V., Katorkin S.E., Smagin E.V., Koltsov A.E. Osteoarthrosis of the knee joints or varicose veins of the lower extremities: Which comes first? Ambulatornaya khirurgiya = Ambulatory Surgery (Russia). 2024;21(2):178-189. (In Russ.) https://doi.org/10.21518/akh2024-038

Views: 1978


ISSN 2712-8741 (Print)
ISSN 2782-2591 (Online)