Preview

Ambulatornaya khirurgiya = Ambulatory Surgery (Russia)

Advanced search

Risk of sarcopenia after bariatric surgery in patients with type 2 diabetes mellitus

https://doi.org/10.21518/1995-1477-2022-19-2-142-151

Abstract

Introduction. Despite the great popularity of Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy in the treatment of morbid obesity, the problem of the development and progression of sarcopenia in patients with type 2 diabetes mellitus in the postoperative period remains insufficiently studied.

Aim. To study the prevalence and dynamics of sarcopenia in patients with type 2 diabetes mellitus after Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy in the long term.

Materials and methods. Our prospective study included 257 bariatric patients (170 Roux-en-Y gastric bypass and 87 laparoscopic sleeve gastrectomy) with type 2 diabetes mellitus. All patients underwent a standard set of preoperative examination with obligatory determination of the skeletal muscle mass index using the bioelectrical impedance analysis. After 6, 12, 18 and 24 months, control examinations were carried out.

Results. At the preoperative stage, 28 patients (16.5%) with signs of moderate sarcopenia were identified in the Roux-en-Y gastric bypass group and 15 patients (17.2%) in the laparoscopic sleeve gastrectomy group. According to the bioelectrical impedance analysis, 24 months after the operation, 37 patients (25.9%) with signs of moderate sarcopenia and 2 patients (1.4%) with severe sarcopenia were identified in the first group. 24 months after surgery in the second group there was no statistical difference in the number of patients with signs of sarcopenia in comparison with the preoperative period.

Conclusion. The frequency of development and progression of signs of sarcopenia after Roux-en-Y gastric bypass is statistically higher than after laparoscopic sleeve gastrectomy. In this regard, in our opinion, when choosing a method of surgical treatment of morbid obesity with concomitant type 2 diabetes mellitus, a detailed assessment of the state of protein metabolism by the bioelectrical impedance analysis is necessary.

About the Authors

A. G. Khitaryan
Clinical Hospital Russian Railway-Medicine Rostov-on-Don; Rostov State Medical University
Russian Federation

Aleksandr G. Khitaryan - Dr. Sci. (Med.), Professor, Head of the Department of Surgical Diseases No. 3, Rostov SMU; Head of the Surgical Department, CHR Railway-Medicine Rostovon-Don

29, Nakhichevansky Lane, Rostov-on-Don, 344022; 92a, Varfolomeeva St., Rostov-on-Don, 344011



A. A. Abovyan
Rostov State Medical University
Russian Federation

Arutyun A. Abovyan - Рostgraduate Student of the Department of Surgical Diseases No. 3, Rostov SMU.

29, Nakhichevansky Lane, Rostov-on-Don, 344022



A. V. Mezhunts
Clinical Hospital Russian Railway-Medicine Rostov-on-Don; Rostov State Medical University
Russian Federation

Arut V. Mezhunts - Cand. Sci. (Med.), Assistant of the Department of Surgical Diseases No. 3, Rostov SMU; Surgeon of the Surgical Department, CHR Railway-Medicine Rostov-on-Don

29, Nakhichevansky Lane, Rostov-on-Don, 344022; 92a, Varfolomeev St., Rostov-on-Don, 344011



A. A. Orekhov
Rostov State Medical University
Russian Federation

Alexey A. Orekhov - Cand. Sci. (Med.), Associate Professor of the Department of Surgical Diseases No. 3, SMU; Surgeon of the Surgical Department, CHR Railway-Medicine Rostov-on-

29, Nakhichevansky Lane, Rostov-on-Don, 344022; 92a, Varfolomeev St., Rostov-on-Don, 344011



D. A. Melnikov
Clinical Hospital Russian Railway-Medicine Rostov-on-Don; Rostov State Medical University
Russian Federation

Denis A. Melnikov - Assistant of the Department of Surgical Diseases No. 3, Rostov SMU; Surgeon of the Surgical Department, CHR Railway-Medicine Rostov-on-Don

29, Nakhichevansky Lane, Rostov-on-Don, 344022; 92a, Varfolomeev St., Rostov-on-Don, 344011



А. V. Sarkisyan
Rostov State Medical University
Russian Federation

Aram V. Sarkisyan - Рostgraduate Student of the Department of Surgical Diseases No. 3.

29, Nakhichevansky Lane, Rostov-on-Don, 344022



S. A. Adizov
Clinical Hospital Russian Railway-Medicine Rostov-on-Don
Russian Federation

Suleiman A. Adizov - Surgeon of the Surgical Department.

92a, Varfolomeev St., Rostov-on-Don, 344011



A. A. Rogut
Clinical Hospital Russian Railway-Medicine Rostov-on-Don
Russian Federation

Alexander A. Rogut - Surgeon of the Surgical Department.

92a, Varfolomeev St., Rostov-on-Don, 344011



G. J. Ziegler
Rostov State Medical University
Russian Federation

Gabriella J. Ziegler - Рostgraduate Student of the Department of Surgical Diseases No. 3.

29, Nakhichevansky Lane, Rostov-on-Don, 344022



C. M.J. Amegninou
Rostov State Medical University
Russian Federation

Carlos M.J. Amegninou, Рostgraduate Student of the Department of Surgical Diseases No. 3.

29, Nakhichevansky Lane, Rostov-on-Don, 344022



References

1. Reoch J., Motillo S., Shimony A., Filion K.B., Christou N.V., Joseph L. et al. Safety of laparoscopic vs open bariatric surgery: a systematic review and meta-analysis. Arch Surg. 2011;146:1314–1322. https://doi.org/10.1001/archsurg.2011.270.

2. Salminen P., Helmiö M., Ovaska J., Juuti A., Leivonen M., Peromaa-Haavisto P. et al. Effect of Laparoscopic Sleeve Gastrectomy vs Laparoscopic Roux-en-Y Gastric Bypass on Weight Loss at 5 Years Among Patients With Morbid Obesity: The SLEEVEPASS Randomized Clinical Trial. JAMA. 2018;319(3):241–254. https://doi.org/10.1001/jama.2017.20313.

3. Anagnostis P., Gkekas N.K., Achilla C., Pananastasiou G., Taouxidou P., Mitsiou M. et al. Type 2 Diabetes Mellitus is Associated with Increased Risk of Sarcopenia: A Systematic Review and Meta-analysis. Calcif Tissue Int. 2020;107:453–463. https://doi.org/10.1007/s00223-020-00742-y.

4. Sarodnik C., Bours S.P.G., Schaper N.C., van den Bergh J.P., van Geel T.A.C.M. The risks of sarcopenia, falls and fractures in patients with type 2 diabetes mellitus. Maturitas. 2018;109:70–77. https://doi.org/10.1016/j.maturitas.2017.12.011.

5. Xanthakos S.A. Nutritional deficiencies in obesity and after bariatric surgery. Pediatr Clin North Am. 2009;56:1105–1121. https://doi.org/10.1016/j.pcl.2009.07.002.

6. Kaidar-Person O., Person B., Szomstein S., Rosenthal R.J. Nutritional deficiencies in morbidly obese Patients: a new form of Malnutrition? Obes Surg. 2008;18:870–876. https://doi.org/10.1007/s11695-007-9349-y.

7. Stein J., Stier C., Raab H., Weiner R. Review article: the nutritional and pharmacological consequences of obesity surgery. Aliment Pharmacol Ther. 2014;40:582–609. https://doi.org/10.1111/apt.12872.

8. Parrott J., Frank L., Rabena R., Craggs-Dino L., Isom K.A., Greiman L. American society for metabolic and bariatric surgery integrated health nutritional guidelines for the surgical weight loss patient 2016 Update: micronutrients. Surg Obes Relat Dis. 2017;13(5):727–741. https://doi.org/10.1016/j.soard.2016.12.018.

9. Chaston T.B., Dixon J.B., O’Brien P.E. Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes. 2007;31:743–750. https://doi.org/10.1038/sj.ijo.0803483.

10. Strain G.W., Gagner M., Pomp A., Dakin G., Inabnet W.B., Hsieh J. et al. Comparison of weight loss and body composition changes with four surgical procedures. Surg Obes Relat Dis. 2009;5(5):582–587. https://doi.org/10.1016/j.soard.2009.04.001.

11. Strain G.W., Gagner M., Pomp A., Dakin G., Inabnet W.B., Saif T. Comparison of fat-free mass in super obesity (BMI≥50 kg/m2) and morbid obesity (BMI<50 kg/m2) in response to different weight loss surgeries. Surg Obes Relat Dis. 2012;8:255–259. https://doi.org/10.1016/j.soard.2011.09.028.

12. Fieber J.H., Sharoky C.E., Wirtalla C., Williams N.N., Dempsey D.T., Kelz R.R. The Malnourished Patient With Obesity: A Unique Paradox in Bariatric Surgery. J Surg Res. 2018;232:456–463. https://doi.org/10.1016/j.jss.2018.06.056.

13. Sanz-Requena R., Martínez-Arnau F.M., Pablos-Monzó A., Flor-Rufino C., Barrachina-Igual J., García-Martí G. et al. The Role of Imaging Biomarkers in the Assessment of Sarcopenia. Diagnostics (Basel). 2020;10(8):534. https://doi.org/10.3390/diagnostics10080534.

14. Buckinx F., Landi F., Cesari M., Fielding R.A., Visser M., Engelke K. et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle 2018;9(2):269–278. https://doi.org/10.1002/jcsm.12268.

15. Graf C.E., Pichard C., Herrmann F.R., Sieber C.C., Zekry D., Genton L. Prevalence of low muscle mass according to body mass index in older adults. Nutrition. 2017;34:124–129. https://doi.org/10.1016/j.nut.2016.10.002.

16. Lardiés-Sánchez B., Sanz-Paris A., Boj-Carceller D., Cruz-Jentoft A.J. Systematic review: prevalence of sarcopenia in ageing people using bioelectrical impedance analysis to assess muscle mass. Eur Geriatr Med. 2016;7(3):256–261. doi:10.1016/j.eurger.2016.01.014.

17. Shafiee G., Keshtkar A., Soltani A., Ahadi Z., Larijani B., Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta-analysis of general population studies. J Diabetes Metab Disord. 2017;16:21. https://doi.org/10.1186/s40200-017-0302-x.

18. Dixon J.B., Bhasker A.G., Lambert G.W., Lakdawala M. Leg to leg bioelectrical impedance analysis of percentage fat mass in obese patients-Can it tell us more than we already know? Surg Obes Relat Dis. 2016;12:1397–1402. https://doi.org/10.1016/j.soard.2016.01.027.

19. Voican C.S., Lebrun A., Maitre S., Lainas P., Lamouri K., Njike-Nakseu M. et al. Predictive score of sarcopenia occurrence one year after bariatric surgery in severely obese patients. PLoS ONE. 2018;13(5):e0197248. https://doi.org/10.1371/journal.pone.0197248.

20. Heshka S., Lemos T., Astbury N.M., Widen E., Davidson L., Goodpaster B.H. Resting Energy Expenditure and Organ-Tissue Body Composition 5 Years After Bariatric Surgery. Obes Surg. 2020;30:587–594. https://doi.org/10.1007/s11695-019-04217-4.

21. Pekař M., Pekařová A., Bužga M., Holéczy P., Soltes M. The risk of sarcopenia 24 months after bariatric surgery -assessment by dual energy X-ray absorptiometry (DEXA): a prospective study. Videosurgery Miniinv. 2020;15:583–587. https://doi.org/10.5114/wiitm.2020.93463.

22. Patti M.E., Goldfine A.B. Hypoglycemia after gastric bypass: the dark side of GLP-1. Gastroenterology. 2014;146:605–608. https://doi.org/10.1053/j.gastro.2014.01.038.

23. Sjöström L., Lindroos A.K., Peltonen M., Torgerson J., Bouchard C., Carlsson B. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–2693. https://doi.org/10.1056/NEJMoa035622.

24. Sjostrom L., Narbro K., Sjöström C.D., Karason K., Larsson B., Wedel H., et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–752. https://doi.org/10.1056/NEJMoa066254.

25. Ford K.R., Khoury J.C., Biro F.M. Early markers of pubertal onset: height and foot size. J Adolesc Health. 2009;44:500–501. https://doi.org/10.1016/j.jadohealth.2008.10.004.

26. Herpertz S., Kielmann R., Wolf A.M., Langkafel M., Senf W., Hebebrand J. Does obesity surgery improve psychosocial functioning? A systematic review. Int J Obes Relat Metab Disord. 2003;27:1300–1314. https://doi.org/10.1038/sj.ijo.0802410.

27. McTigue K.M., Harris R., Hemphill B., Lux L., Sutton S., Bunton A. et al. Screening and interventions for obesity in adults: summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2003;139:933–949. https://doi.org/10.7326/0003-4819-139-11200312020-00013.

28. Schauer P.R., Bhatt D.L., Kirwan J.P., Wolski K., Brethauer S.A., Navaneethan S.D. et al. Bariatric surgery versus intensive medical therapy for diabetes: 3-year outcomes. N Engl J Med 2014;370:2002–2013. https://doi.org/10.1056/NEJMoa1401329.

29. Qi L., Guo Y., Liu C.-Q., Huang Z-P., Sheng Y., Zou D.-J. Effects of bariatric surgery on glycemic and lipid metabolism, surgical complication and quality of life in adolescents with obesity: a systematic review and meta-analysis. Surg Obes Relat Dis. 2017;13(12):2037–2055. https://doi.org/10.1016/j.soard.2017.09.516.

30. Borgeraas H., Hofsø D., Hertel J.K., Hjelmesaeth J. Comparison of the effect of Roux-en-Y gastric bypass and sleeve gastrectomy on remission of type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2020;21:e13011. https://doi.org/10.1111/obr.13011.

31. Adamczyk P., Buzga M., Holeczy P., Švagera Z., Zonča P., Sievänen H., Pluskiewicz W. Body size, bone mineral density and body composition in obese women after laparoscopic sleeve gastrectomy: a 1-year longitudinal study. Horm Metab Res. 2015;47:873–879. https://doi.org/10.1055/s-0035-1555758.

32. Bužga M., Marešová P., Petřeková K., Holéczy P., Kuča K. The efficacy of selected bariatric surgery methods on lipid and glucose metabolism: a retrospective 12-month study. Cent Eur J Public Health. 2018;26:49–53. https://doi.org/10.21101/cejph.a4637.

33. Kasalický M., Bařinka A., Čierny M., Fried M., Gryga A., Holéczy P. et al. 10 years of sleeve gastrectomy in the Czech Republic in terms of the surgical procedure. Rozhl Chir. 2016;95:425–431. Available at: https://www.prolekare.cz/en/journals/perspectives-insurgery/2016-12-1/10-years-of-sleeve-gastrectomy-in-the-czech-republic-in-terms-of-the-surgical-procedure-60220.

34. Bužga M., Hauptman K., Švagera Z., Hauptman K., Holéczy P. Metabolic effects of sleeve gastrectomy andl aparoscopic greater curvature plication: an 18-month prospective, observational, open-label study. Obes Surg. 2017;27:3258–3266. https://doi.org/10.1007/s11695-017-2779-2.

35. Adamczyk P., Bužga M., Holéczy P., Švagera Z., Šmajstrla V., Zonča P., Pluskiewicz W. Bone mineral density and body composition afterl aparoscopic sleeve gastrectomy in men: a short-terml ongitudinal study. Int J Surg. 2015;23:101–107. https://doi.org/10.1016/j.ijsu.2015.09.048.

36. Park S.W., Goodpaster B.H., Strotmeyer E.S., de Rekeneire N., Harris T.B., Schwartz A.V. et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55(6):1813–1818. https://doi.org/10.2337/db05-1183.

37. Park S.W., Goodpaster B.H., Strotmeyer E.S., Kuller L.H., Broudeau R., Kammerer C. et al. Health, Aging, and Body Composition Study. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care. 2007;30:1507–1512. https://doi.org/10.2337/dc06-2537.

38. Barazzoni R., Bischoff S., Boirie Y., Busetto L., Cederholm T., Dicker D. et al. Sarcopenic obesity: time to meet the challenge. Obes Facts. 2018;11(4):294–305. https://doi.org/10.1159/000490361.


Review

For citations:


Khitaryan A.G., Abovyan A.A., Mezhunts A.V., Orekhov A.A., Melnikov D.A., Sarkisyan А.V., Adizov S.A., Rogut A.A., Ziegler G.J., Amegninou C.M. Risk of sarcopenia after bariatric surgery in patients with type 2 diabetes mellitus. Ambulatornaya khirurgiya = Ambulatory Surgery (Russia). 2022;19(2):142-151. (In Russ.) https://doi.org/10.21518/1995-1477-2022-19-2-142-151

Views: 718


ISSN 2712-8741 (Print)
ISSN 2782-2591 (Online)