Preview

Ambulatornaya khirurgiya = Ambulatory Surgery (Russia)

Advanced search

Modern markers of inflammatory process in surgical practice

https://doi.org/10.21518/1995-1477-2022-19-1-147-156

Abstract

Introduction. Currently, one of the important problems in surgery is the search for new markers of the inflammatory process to determine the prognosis of the disease, substantiate the need for surgical intervention and to assess the effectiveness of treatment.

Aim. To evaluate the possibilities and prospects of using modern markers of the inflammatory process in the practice of a surgeon.

Materials and methods. In the course of the present investigation we analyzed relevant sources of domestic and foreign literature on the topic of application and possibilities of use of modern inflammatory process markers in various fields of medicine. Information was collected from databases of ScienceDirect, Cyberleninka.ru, and PubMed.

Results. Acute phase proteins, as markers of inflammation, are valuable tools in the diagnosis, treatment and prognosis of inflammatory diseases, as they are sensitive to systemic inflammation. Important criteria for the use of biomarkers of inflammation are: a low number of false positive results and the possibility of using the marker not only as an indicator of the disease, but also to determine the severity of the patient’s condition. In order to assess the presence of inflammation in clinical conditions, laboratories evaluate the concentrations of various acute phase proteins in plasma. Currently, the most relevant markers of inflammatory processes are: C-reactive protein; haptoglobin; presepsin is also an early indicator of inflammation; fibrinogen; serum amyloid A; a complement system containing key markers of inflammation. Determining them in the surgeon’s practice will allow you to predict the outcome of the disease and evaluate the results of treatment.

Conclusion. At the moment, the determination of inflammatory markers helps in predicting the disease, planning treatment tactics, evaluating the effectiveness of therapy after surgery and in earlier diagnosis of severe conditions.

About the Authors

A. M. Morozov
Tver State Medical University
Russian Federation

Artem M. Morozov, Cand. Sci. (Med.), Associate Professor, Department of General Surgery

4, Sovetskaya St., Tver, 170100



A. N. Sergeev
Tver State Medical University
Russian Federation

Alexey N. Sergeev, Dr. Sci. (Med.), Associate Professor, Head of the Department of General Surgery

4, Sovetskaya St., Tver, 170100



S. V. Zhukov
Tver State Medical University
Russian Federation

Sergey V. Zhukov, Dr. Sci. (Med.), Professor, Head of the Department of Ambulance and Disaster Medicine

4, Sovetskaya St., Tver, 170100



N. S. Novikova
Tver State Medical University
Russian Federation

Nadezhda S. Novikova, 6th Year Student

4, Sovetskaya St., Tver, 170100



M. A. Belyak
Tver State Medical University
Russian Federation

Maria A. Belyak, 4th Year Student of the Faculty of General Medicine

4, Sovetskaya St., Tver, 170100



References

1. Shishkin N.V., Zhukov S.V., Morozov A.M., Sergeev A.N., Minakova Yu.E., Protchenko I.G., Peltikhina O.V. On inflammatory markers relevant in the surgical hospital setting. Moscow Journal of Surgery. 2020;(1):70–77. (In Russ.) https://doi.org/10.17238/issn2072-3180.2020.1.70-77.

2. Rose-John S. Interleukin-6 Family Cytokines. Cold Spring Harb Perspect Biol. 2018:1;10(2):a028415. https://doi.org/10.1101/ cshperspect.a028415.

3. Mantovani A., Dinarello C.A., Molgora M., Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019;16;50(4):778–795. https://doi.org/10.1016/j.immuni.2019.03.012.

4. Nirala N.R., Shtenberg G. Gold Nanoparticle Size-Dependent Enhanced Chemiluminescence for Ultra-Sensitive Haptoglobin Biomarker Detection. Biomolecules. 2019;9(8):372. https://doi. org/10.3390/biom9080372.

5. Abdulkhaleq L.A., Assi M.A., Abdullah R., Zamri-Saad M., TaufiqYap Y.H., Hezmee M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet World. 2018;11(5): 627–635. https://doi.org/10.14202/vetworld.2018.627-635.

6. Kushner I. The acute phase response: an overview. Methods Enzymol. 1988;163:373–383. https://doi.org/10.1016/0076- 6879(88)63037-0.

7. Lüthje F.L., Blirup-Plum S.A., Møller N.S., Heegaard P.M.H., Jensen H.E., Kirketerp-Møller K. et al. The host response to bacterial bone infection involves alocal upregulation of several acute phase proteins. Immunobiology. 2020;225(3):151914. https://doi.org/10.1016/j.imbio.2020.151914.

8. Mikhalchik E.V., Borodina I.V., Vlasova I.V., Vakhrusheva T.V., Gorbunov N.P., Panasenko O.M. et al. Markers of systemic inflammation inlocal and disseminated peritonitis. Biomeditsinskaya Khimiya. 2020;66(5):411–418. (In Russ.) https://doi.org/10.18097/PBMC20206605411.

9. Peters C., Murthy S., Brant R., Kissoon N., Görges M. Mortality Risk Using a Pediatric Quick Sequential (Sepsis-Related) Organ Failure Assessment Varies With Vital Sign Thresholds. Pediatric Critical Care Medicine. 2018;19(8):394–402. https://doi. org/10.1097/pcc.0000000000001598.

10. Ivanova O.N., Grigoryev E.V. Diagnostic markers of early neonatal sepsis – limitations and prospects. Messenger of Anesthesiology and Resuscitation. 2020;7(6):72–79. (In Russ.) https://doi.org/10.21292/2078-5658-2020-17-6-72-79.

11. Klingenberg K., Cornelisse R., Buonocore D., Meyer R., Stocker M. Early neonatal sepsis with negative cultures: at the crossroads between effective sepsis treatment and antibiotic therapy strategies. Neonatology: News, Opinions, Training. 2020;8(27): 95–106. (In Russ.) https://doi.org/10.3389/fped.2018.00285.

12. Califf R.M. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018;243(3):213–221. https://doi. org/10.1177/1535370217750088.

13. Don E.S., Tarasov A.V., Epstein O.I., Tarasov S.A. Biomarkers in medicine: search, selection, study and validation. Klinichescheskaya Laboratornaya Diagnostika. 2017;62(1):52–59. (In Russ.) https://doi. org/10.18821/0869-2084-2017-62-1-52-59.

14. Slaats J., Ten Oever J., van de Veerdonk F.L., Netea M.G. IL-1 / IL-6/CRP and IL-18/ferritin: Distinct Inflammatory Programs in Infections. PLoS Pathog. 2016;15(12):e1005973. https://doi. org/10.1371/journal.ppat.1005973.

15. Markozannes G., Koutsioumpa C., Cividini S., Monori G., Tsilidis K.K., Kretsavos N. et al. Global assessment of C-reactive protein and health-related outcomes: an umbrella review of evidence from observational studies and Mendelian randomization studies. Eur J Epidemiol. 2021;36(1):11–36. https://doi.org/10.1007/s10654-020-00681-w.

16. Du Clos T.W. Pentraxins: structure, function, and role in inflammation. ISRN Inflamm. 2013;2013:379040. https://doi. org/10.1155/2013/379040.

17. Stancel N., Chen C.C., Ke L.Y., Chu C.-S., Lu J., Sawamura T., Chen C.-H. Interplay between CRP, Atherogenic LDL, and LOX1 and Its Potential Role in the Pathogenesis of Atherosclerosis. Clin Chem. 2016;62(2):320–327. https://doi.org/10.1373/ clinchem.2015.243923.

18. Utkina E.A., Afanasyeva O.I., Pokrovsky S.N. C-reactive protein: pathogenetic properties and a possible therapeutic target. Russian Journal of Cardiology. 2021;26(6):4138. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4138.

19. Caprio V., Badimon L., Di Napoli M., Fang W.-H., Ferris G.R., Guo B. et al. pCRP-mCRP Dissociation Mechanisms as Potential Targets for the Development of Small-Molecule AntiInflammatory Chemotherapeutics. Front Immunol. 2018;9:1089. https://doi.org/10.3389/fimmu.2018.01089.

20. Polevshchikov A.V., Nazarov P.G. Immunology of proteins of the acute phase of inflammation and works of R.V. Petrov. Immunology. 2020;41(2):167–173. (In Russ.) https://doi. org/10.33029/0206-4952-2020-41-2-167-173.

21. McFadyen J.D., Kiefer J., Braig D., Loseff-Silver J., Potempa L.A., Eisenhardt S.U., Peter K. Dissociation of C-Reactive Protein Localizes and Amplifies Inflammation: Evidence for a Direct Biological Role of C-Reactive Protein and Its Conformational Changes. Front Immunol. 2018;9:1351. https://doi.org/10.3389/ fimmu.2018.01351.

22. Pathak A., Agrawal A. Evolution of C-Reactive Protein. Front Immunol. 2019;10:943. https://doi.org/10.3389/ fimmu.2019.00943.

23. Melnikov I.S, Kozlov S.G, Chumachenko P.V., Saburova O.S., Guseva O.A., Prokofyeva L.V., Gabbasov Z.A. Monomeric C-reactive protein and local inflammatory reaction in the wall of the coronary arteries in patients with stable coronary artery disease. Russian Journal of Cardiology. 2019;24(5):56–61. (In Russ.) https://doi. org/10.15829/1560-4071-2019-5-56-61.

24. Potempa L.A., Rajab I.M., Olson M.E., Hart P.C. C-Reactive Protein and Cancer: Interpreting the Differential Bioactivities of Its Pentameric and Monomeric, Modified Isoforms. Front Immunol. 2021;12:744129. https://doi.org/10.3389/ fimmu.2021.744129.

25. Wan B.N., Zhou S.G., Wang M., Zhang X., Ji G. Progress on haptoglobin and metabolic diseases. World J Diabetes. 2021;12(3):206–214. https://doi.org/10.4239/wjd.v12.i3.206.

26. Liang W., Ferrara N. Iron Metabolism in the Tumor Microenvironment: Contributions of Innate Immune Cells. Front Immunol. 2021;11:626812. https://doi.org/10.3389/ fimmu.2020.626812.

27. Naryzhnyy S.N., Legina O.K. Haptoglobin as a biomarker. Biomeditsinskaya Khimiya. 2021;67(2):105–118. (In Russ.) https://doi.org/10.18097/PBMC20216702105.

28. Memar M.Y., Alizadeh N., Varshochi M., Kafil H.S. Immunologic biomarkers for diagnostic of early-onset neonatal sepsis. J Matern Fetal Neonatal Med. 2019;32(1):143–153. https://doi.org/10.1080/14767058.2017.1366984.

29. Kargaltseva N.M., Kotcherovets V.I., Mironov A.Yu., Borisova O.Yu., Burbello A.T. Inflammation markers and bloodstream infection (review ofliterature). Klinichescheskaya Laboratornaya Diagnostika. 2019;64(7):435–442. (In Russ.) https://doi.org/10.18821/0869-2084-2019-64-7-435-442.

30. Van der Mark V.A., Ghiboub M., Marsman C., Zhao J., van Dijk R., Hiralall J.K. et al. Erratum to: Phospholipid flippases attenuate LPS-induced TLR4 signaling by mediating endocytic retrieval of Toll-like receptor 4. Cell Mol Life Sci. 2017;74(7):1365. https://doi.org/10.1007/s00018-017-2475-3.

31. Pugni L., Pietrasanta C., Milani S., Vener C., Ronchi A., Falbo M., Arghittu M., Mosca F. Presepsin (Soluble CD14 Subtype): Reference Ranges of a New Sepsis Marker in Term and Preterm Neonates. PLoS ONE. 2015;10(12):e0146020. https://doi. org/10.1371/journal.pone.0146020.

32. Leli C., Ferranti M., Marrano U., Al Dhahab Z.S., Bozza S., Cenci E., Mencacci A. Diagnostic accuracy of presepsin (sCD14-ST) and procalcitonin for prediction of bacteraemia and bacterial DNAaemia in patients with suspected sepsis. J Med Microbiol. 2016;65(8):713–719. https://doi.org/10.1099/jmm.0.000278.

33. Wu C.C., Lan H.M., Han S.T., Chaou C.H., Yeh C.F., Liu S.H. et al. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: a systematic review and meta-analysis. Ann Intensive Care. 2017;7(1):91. https://doi. org/10.1186/s13613-017-0316-z.

34. Memar M.Y., Baghi H.B. Presepsin: A promising biomarker for the detection of bacterial infections. Biomedicine and Pharmacotherapy. 2019;111:649–656. https://doi.org/10.1016/j. biopha.2018.12.124.

35. Masson S., Caironi P., Fanizza C., Thomae R., Bernasconi R., Noto A. et al. Circulating presepsin (soluble CD14 subtype) as a marker of host response in patients with severe sepsis or septic shock: data from the multicenter, randomized ALBIOS trial. Intensive Care Med. 2015;41(1):12–20. https://doi. org/10.1007/s00134-014-3514-2.

36. Memar M.Y., Ghotaslou R., Samiei M., Adibkia K. Antimicrobial use of reactive oxygen therapy: current insights. Infect Drug Resist. 2018;11:567–576. https://doi.org/10.2147/IDR.S142397.

37. Zou Q., Wen W., Zhang X.C. Presepsin as a novel sepsis biomarker. World J Emerg Med. 2014;5(1):16–19. https://doi. org/10.5847/wjem.j.issn.1920-8642.2014.01.002.

38. Wu J., Hu L., Zhang G., Wu F., He T. Accuracy of Presepsin in Sepsis Diagnosis: A Systematic Review and Meta-Analysis. PLoS ONE. 2015;10(7):e0133057. https://doi.org/10.1371/ journal.pone.0133057.

39. Zhang J., Hu Z.D., Song J., Shao J. Diagnostic Value of Presepsin for Sepsis: A Systematic Review and MetaAnalysis. Medicine (Baltimore). 2015;94(47):e2158. https://doi. org/10.1097/MD.0000000000002158.

40. Godnic M., Stubljar D., Skvarc M., Jukic T. Diagnostic and prognostic value of sCD14-ST – presepsin for patients admitted to hospital intensive care unit (ICU). Wien Klin Wochenschr. 2015;127(13–14):521–527. https://doi. org/10.1007/s00508-015-0719-5.

41. Memar M.Y., Varshochi M., Shokouhi B., Asgharzadeh M., Kafil H.S. Procalcitonin: The marker of pediatric bacterial infection. Biomed Pharmacother. 2017;96:936–943. https://doi.org/10.1016/j.biopha.2017.11.149.

42. Leli C., Ferranti M., Marrano U., Al Dhahab Z.S., Bozza S., Cenci E., Mencacci A. Diagnostic accuracy of presepsin (sCD14-ST) and procalcitonin for prediction of bacteraemia and bacterial DNAaemia in patients with suspected sepsis. J Med Microbiol. 2016;65(8):713–719. https://doi.org/10.1099/jmm.0.000278.

43. Topcuoglu S., Arslanbuga C., Gursoy T., Aktas A., Karatekin G. Uluhan R., Ovali F. Role of presepsin in the diagnosis oflateonset neonatal sepsis in preterm infants. J Matern Fetal Neonatal Med. 2016;29(11):1834–1839. https://doi.org/10.3109/ 14767058.2015.1064885.

44. Iskandar A., Arthamin M.Z., Indriana K., Anshory M., Hur M., Di Somma S. Comparison between presepsin and procalcitonin in early diagnosis of neonatal sepsis. J Matern Fetal Neonatal Med. 2019;32(23):3903–3908. https://doi.org/10.108 0/14767058.2018.1475643.

45. Awasthi S. Can Estimation of Presepsin Levels in Endotracheal Aspirate Predict Early Onset Pneumonia in Newborns? Indian J Pediatr. 2018;85(11):954. https://doi.org/10.1007/ s12098-018-2764-3.

46. Kumar N., Dayal R., Singh P., Pathak S., Pooniya V., Goyal A. A Comparative Evaluation of Presepsin with Procalcitonin and CRP in Diagnosing Neonatal Sepsis. Indian J Pediatr. 2019;86(2):177–179. https://doi.org/10.1007/ s12098-018-2659-3.

47. Baraka A., Zakaria M. Presepsin as a diagnostic marker of bacterial infections in febrile neutropenic pediatric patients with hematological malignancies. Int J Hematol. 2018;108(2):184–191. https://doi.org/10.1007/s12185-018-2447-x.

48. Maddaloni C., De Rose D.U., Santisi A., Martini L., Caoci S., Bersani I. et al. The Emerging Role of Presepsin (P-SEP) in the Diagnosis of Sepsis in the Critically Ill Infant: A Literature Review. Int J Mol Sci. 2021;22:12154. https://doi.org/10.3390/ ijms222212154.

49. Plesko M., Suvada J., Makohusova M., Waczulikova I., Behulova D., Vasilenkova A. et al. The role of CRP, PCT, IL-6 and presepsin in early diagnosis of bacterial infectious complications in paediatric haemato-oncological patients. Neoplasma. 2016;63(5):752–760. https://doi.org/10.4149/neo_2016_512.

50. Yoon S.H., Kim E.H., Kim H.Y., Ahn J.G. Presepsin as a diagnostic marker of sepsis in children and adolescents: a systemic review and meta-analysis. BMC Infect Dis. 2019;19(1):760. https://doi.org/10.1186/s12879-019-4397-1.

51. Ozdemir A.A., Elgormus Y. Diagnostic Value of Presepsin in Detection of Early-Onset Neonatal Sepsis. Am J Perinatol. 2017;34(6):550–556. https://doi.org/10.1055/s-0036-1593851.

52. Kumar N., Dayal R., Singh P., Pathak S., Pooniya V., Goyal A., Kamal R., Mohanty K.K. A Comparative Evaluation of Presepsin with Procalcitonin and CRP in Diagnosing Neonatal Sepsis. Indian J Pediatr. 2019;86(2):177–179. https://doi.org/10.1007/ s12098-018-2659-3.

53. Wolf T.A., Wimalawansa S.J., Razzaque M.S. Procalcitonin as a biomarker for critically ill patients with sepsis: Effects of vitamin D supplementation. J Steroid Biochem Mol Biol. 2019;193:105428. https://doi.org/10.1016/j.jsbmb.2019.105428.

54. Nanno S., Koh H., Katayama T., Hashiba M., Sato A., Makuuchi Y. et al. Okamura, Plasma levels of presepsin (soluble cd14- subtype) as a novel prognostic marker for hemophagocytic syndrome in hematological malignancies. Intern Med. 2016;55(16):2173–2184. https://doi.org/10.2169/ internalmedicine.55.6524.

55. Saito J., Hashiba E., Kushikata T., Mikami A., Hirota K. Changes in presepsin concentrations in surgical patients with end-stage kidney disease undergoing living kidney transplantation: a pilot study. J Anesth. 2016;30(1):174–177. https://doi.org/10.1007/ s00540-015-2065-1.

56. Pieters M., Wolberg A.S. Fibrinogen and fibrin: An illustrated review. Res Pract Thromb Haemost. 2019;3(2):161-172. https://doi.org/10.1002/rth2.12191.

57. Neerman-Arbez M., Casini A. Clinical Consequences and Molecular Bases of Low Fibrinogen Levels. Int J Mol Sci. 2018;19(1):192. https://doi.org/10.3390/ijms19010192.

58. Butera D., Hogg P.J. Fibrinogen function achieved through multiple covalent states. Nat Commun. 2020;11(1):5468. https://doi.org/10.1038/s41467-020-19295-7.

59. Vilar R., Fish R.J., Casini A., Neerman-Arbez M. Fibrin(ogen) in human disease: both friend and foe. Haematologica. 2020;105(2):284–296. https://doi.org/10.3324/ haematol.2019.236901.

60. Luyendyk J.P., Schoenecker J.G., Flick M.J. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 2019;133(6):511–520. https://doi.org/10.1182/ blood-2018-07-818211.

61. Sulimai N., Lominadze D. Fibrinogen and Neuroinflammation During Traumatic Brain Injury. Molecular Neurobiology. 2020;57(11):4692– 4703. https://doi.org/10.1007/s12035-020-02012-2.

62. Surma S., Banach M. Fibrinogen and Atherosclerotic Cardiovascular Diseases-Review of the Literature and Clinical Studies. Int J Mol Sci. 2021;23(1):193. https://doi.org/10.3390/ ijms23010193.

63. Averbach M.M., Panova L.V., Ovsyankina E.S., Khiteva A. Yu. The role of serum amyloid A and C-reactive protein in predicting postoperative complications and exacerbation of the tuberculous process after surgery in older children and adolescents. Immunology. 2020;41(4): 337–343. (In Russ.) https://doi.org/10.33029/0206-4952-2020-41-4-337-343.

64. Sack G.H.Jr. Serum amyloid A — a review. Mol Med. 2018;24(1):46. https://doi.org/10.1186/s10020-018-0047-0.

65. Lu J., Yu Y., Zhu I., Cheng Y., Sun P.D. Structural mechanism of serum amyloid A-mediated inflammatory amyloidosis. Proc Natl Acad Sci U S A. 2014;111(14):5189–5194. https://doi. org/10.1073/pnas.1322357111.

66. Sun L., Zhou H., Zhu Z., Yan Q., Wang L., Liang Q., Ye R.D. Ex vivo and in vitro effect of serum amyloid a in the induction of macrophage M2 markers and efferocytosis of apoptotic neutrophils. J Immunol. 2015;194(10):4891–4900. https://doi. org/10.4049/jimmunol.1402164.

67. Mayer F.J., Binder C.J., Krychtiuk K.A., Schillinger M., Minar E., Hoke M. The prognostic value of serum amyloid A forlong-term mortality among patients with subclinical carotid atherosclerosis. Eur J Clin Invest. 2019;49(6):e13095. https://doi.org/10.1111/eci.13095.

68. Wilson P.G., Thompson J.C., Shridas P., McNamara P.J., de Beer M.C., de Beer F.C. et al. Serum Amyloid A Is an Exchangeable Apolipoprotein. Arterioscler Thromb Vasc Biol. 2018;38(8):1890–1900. https://doi.org/10.1161/ ATVBAHA.118.310979.

69. Frame N.M., Gursky O. Structure of serum amyloid A suggests a mechanism for selective lipoprotein binding and functions: SAA as a hub in macromolecular interaction networks. FEBS Lett. 2016;590(6):866–879. https://doi.org/10.1002/1873-3468.12116.

70. Han C.Y., Tang C., Guevara M.E., Wei H., Wietecha T., Shao B. et al. Serum amyloid A impairs the antiinflammatory propertie of HDL. J Clin Invest. 2016;126(1):266–281. https://doi. org/10.1172/JCI83475.

71. Schuchardt M., Prüfer N., Tu Y., Herrmann J., Hu X.-P., Chebli S. et al. Dysfunctional high-density lipoprotein activates toll-like receptors via serum amyloid A in vascular smooth muscle cells. Sci Rep. 2019;9(1):3421. https://doi.org/10.1038/s41598-019-39846-3.

72. Swertfeger D.K., Rebholz S., Li H., Shah A.S., Davidson W.S., Lu L.J. Feasibility of a plasma bioassay to assess oxidative protection oflow-density lipoproteins by high-density lipoproteins. J Clin Lipidol. 2018;12(6):1539–1548. https://doi.org/10.1016/j.jacl.2018.08.007.

73. Jayaraman S., Haupt C., Gursky O. Paradoxical effects of SAA on lipoprotein oxidation suggest a new antioxidant function for SAA. J Lipid Res. 2016;57(12):2138–2149. https://doi.org/10.1194/jlr.M071191.

74. Sato M., Ohkawa R., Yoshimoto A., Yano K., Ichimura N., Nishimori M. et al. Effects of serum amyloid A on the structure and antioxidant ability of high-density lipoprotein. Biosci Rep. 2016;36(4):e00369. https://doi.org/10.1042/BSR20160075.

75. Webb N.R. High-Density Lipoproteins and Serum Amyloid A (SAA). Curr Atheroscler Rep. 2021;23(2):7. https://doi.org/10.1007/s11883-020-00901-4.

76. Wilson P.G., Thompson J.C., Shridas P., McNamara P.J., de Beer M.C., de Beer F.C. et al. Serum Amyloid A Is an Exchangeable Apolipoprotein. Arterioscler Thromb Vasc Biol. 2018;38(8):1890–1900. https://doi.org/10.1161/ ATVBAHA.118.310979.

77. Zheng A., Widmann C. The interplay between serum amyloid A and HDLs. Curr Opin Lipidol. 2020;31(5):300–301. https://doi.org/10.1097/MOL.0000000000000702.

78. Gonçalves C.A., Sesterheim P. Serum amyloid A protein has been undervalued as a biomarker of COVID-19. Diabetes Metab Res Rev. 2021;37(1):e3376. https://doi.org/10.1002/dmrr.3376.

79. Li H., Xiang X., Ren H., Hui L., Qiang W., Qingming W. et al. Serum Amyloid A is a biomarker of severe Coronavirus Disease and poor prognosis. J Infect. 2020;80(6):646–655. https://doi.org/10.1016/j.jinf.2020.03.035.

80. Schartz N.D., Tenner A.J. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation. 2020;17(1):354. https://doi.org/10.1186/s12974-020-02024-8.

81. Serdobintsev K.V. The complement system (part 1). Allergology and Immunology in Pediatrics. 2016;2(45):41–48. (In Russ.) https://doi.org/10.24411/2500-1175-2016-00013.

82. Shah A., Kishore U., Shastri A. Complement System in Alzheimer’s Disease. Int J Mol Sci. 2021;22(24):13647. https://doi.org/10.3390/ijms222413647.

83. Mortensen S.A., Sander B., Jensen R.K., Pedersen J.S., Golas M.M., Jensenius J.C. et al. Structure and activation of C1, the complex initiating the classical pathway of the complement cascade. Proc Natl Acad Sci U S A. 2017;114(5):986–991. https://doi.org/10.1073/pnas.1616998114.

84. Kleczko E.K., Kwak J.W., Schenk E.L., Nemenoff R.A. Targeting the Complement Pathway as a Therapeutic Strategy in Lung Cancer. Front Immunol. 2019;10:954. https://doi.org/10.3389/ fimmu.2019.00954.

85. Lo M.W., Woodruff T.M. Complement: Bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol. 2020;108(1):339–351. https://doi.org/10.1002/JLB.3MIR0220-270R.

86. Fromell K., Adler A., Åman A., Manivel V.A., Huang S., Dührkop C. et al. Assessment of the Role of C3(H2O) in the Alternative Pathway. Front Immunol. 2020;11:530. https://doi.org/10.3389/ fimmu.2020.00530.

87. Nan R., Furze C.M., Wright D.W., Gor J., Wallis R., Perkins S.J. Flexibility inMannan-Binding Lectin-Associated Serine Proteases-1 and -2 Provides Insight on Lectin Pathway Activation. Structure. 2017;25(2):364–375. https://doi.org/10.1016/j.str.2016.12.014.

88. Keizer M.P., Aarts C., Kamp A.M., van de Wetering M., Woutersa D., Kuijpers T.W. Asparaginase inhibits thelectin pathway of complement activation. Mol Immunol. 2018;93:189– 192. https://doi.org/10.1016/j.molimm.2017.11.027.


Review

For citations:


Morozov A.M., Sergeev A.N., Zhukov S.V., Novikova N.S., Belyak M.A. Modern markers of inflammatory process in surgical practice. Ambulatornaya khirurgiya = Ambulatory Surgery (Russia). 2022;19(1):147-156. (In Russ.) https://doi.org/10.21518/1995-1477-2022-19-1-147-156

Views: 2183


ISSN 2712-8741 (Print)
ISSN 2782-2591 (Online)