Preview

Амбулаторная хирургия

Расширенный поиск

Современные маркеры воспалительного процесса в хирургической практике

https://doi.org/10.21518/1995-1477-2022-19-1-147-156

Аннотация

 

Введение. В настоящее время одной из актуальных проблем в хирургии является поиск новых маркеров воспалительного процесса для определения прогноза заболевания, обоснования необходимости хирургического вмешательства и для оценки эффективности лечения.

Цель исследования. Оценить возможности и перспективы применения современных маркеров воспалительного процесса в практике врача-хирурга.

Материалы и методы. В ходе настоящего исследования были проанализированы актуальные источники отечественной и зарубежной литературы по вопросу применения и возможностей использования современных маркеров воспалительного процесса в различных областях медицины. Информация была собрана из базы данных Science Direct, Cyberleninka.ru, PubMed.

Результаты. Белки острой фазы, как маркеры воспаления, являются ценным инструментом в диагностике, лечении и прогнозировании воспалительных заболеваний, т. к. обладают чувствительностью к системному воспалению. Важными критериями использования биомаркеров воспаления являются низкое число ложноположительных результатов и возможность использования маркера не только как индикатора заболевания, но и для определения тяжести состояния больного. Для того чтобы оценить наличие воспаления в клинических условиях, лаборатории оценивают концентрации различных белков острой фазы в плазме. В настоящее время наиболее актуальными маркерами воспалительных процессов являются С-реактивный белок и гаптоглобин, ранним индикатором воспаления является также пресепсин, фибриноген, сывороточный амилоид А и система комплемента, содержащая ключевые маркеры воспаления. Определение их в практике врача-хирурга позволит прогнозировать исход заболевания и оценивать результаты лечения.

Выводы. На данный момент определение маркеров воспаления помогает в прогнозировании заболевания, планировании тактики лечения, оценке эффективности терапии в послеоперационном периоде и ранней диагностике угрожающих жизни состояний. Последние исследования показали, что белки острой фазы не только играют роль в явлениях воспаления, но и повышают риск развития сердечно-сосудистых заболеваний, играют роль в атерогенезе, неопластических процессах, гемостазе и аутоиммунных процессах.

Об авторах

А. М. Морозов
Тверской государственный медицинский университет
Россия

Морозов Артем Михайлович, к.м.н., доцент кафедры общей хирургии

170100, Тверь, ул. Советская, д. 4



А. Н. Сергеев
Тверской государственный медицинский университет
Россия

Сергеев Алексей Николаевич, д.м.н., доцент, заведующий кафедрой общей хирургии

170100, Тверь, ул. Советская, д. 4



С. В. Жуков
Тверской государственный медицинский университет
Россия

Жуков Сергей Владимирович, д.м.н., заведующий кафедрой скорой помощи и медицины катастроф

170100, Тверь, ул. Советская, д. 4



Н. С. Новикова
Тверской государственный медицинский университет
Россия

Новикова Надежда Сергеевна, студентка 6-го курса

170100, Тверь, ул. Советская, д. 4



М. А. Беляк
Тверской государственный медицинский университет
Россия

Беляк Мария Александровна, студентка 4-го курса лечебного факультета

170100, Тверь, ул. Советская, д. 4



Список литературы

1. Шишкин Н.В., Жуков С.В., Морозов А.М., Сергеев А.Н., Минакова Ю.Е., Протченко И.Г., Пельтихина О.В. О маркерах воспаления, актуальных в условиях хирургического стационара. Московский хирургический журнал. 2020;(1):70–77. https://doi.org/10.17238/issn2072-3180.2020.1.70-77.

2. Rose-John S. Interleukin-6 Family Cytokines. Cold Spring Harb Perspect Biol. 2018:1;10(2):a028415. https://doi.org/10.1101/cshperspect.a028415.

3. Mantovani A., Dinarello C.A., Molgora M., Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019;16;50(4):778–795. https://doi.org/10.1016/j.immuni.2019.03.012.

4. Nirala N.R., Shtenberg G. Gold Nanoparticle Size-Dependent Enhanced Chemiluminescence for Ultra-Sensitive Haptoglobin Biomarker Detection. Biomolecules. 2019;9(8):372. https://doi.org/10.3390/biom9080372.

5. Abdulkhaleq L.A., Assi M.A., Abdullah R., Zamri-Saad M., TaufiqYap Y.H., Hezmee M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet World. 2018;11(5): 627–635. https://doi.org/10.14202/vetworld.2018.627-635.

6. Kushner I. The acute phase response: an overview. Methods Enzymol. 1988;163:373–383. https://doi.org/10.1016/0076-6879(88)63037-0.

7. Lüthje F.L., Blirup-Plum S.A., Møller N.S., Heegaard P.M.H., Jensen H.E., Kirketerp-Møller K. et al. The host response to bacterial bone infection involves alocal upregulation of several acute phase proteins. Immunobiology. 2020;225(3):151914. https://doi.org/10.1016/j.imbio.2020.151914.

8. Михальчик Е.В., Бородина И.В., Власова И.В., Вахрушева Т.В., Горбунов Н.П., Панасенко О.М. и др. Маркеры системного воспаления при местном и распространенном перитоните. Биомедицинская химия. 2020;66(5):411–418. https://doi.org/10.18097/PBMC20206605411.

9. Peters C., Murthy S., Brant R., Kissoon N., Görges M. Mortality Risk Using a Pediatric Quick Sequential (Sepsis-Related) Organ Failure Assessment Varies With Vital Sign Thresholds. Pediatric Critical Care Medicine. 2018;19(8):394–402. https://doi.org/10.1097/pcc.0000000000001598.

10. Иванова О.Н., Григорьев Е.В. Диагностические маркеры раннего неонатального сепсиса – ограничения и перспективы. Вестник анестезиологии и реаниматологии. 2020;17(6): 72–79. https://doi.org/10.21292/2078-5658-2020-17-6-72-79.

11. Клингенберг К., Корнелиссе Р., Буонокоре Д., Майер Р., Стокер М. Ранний неонатальный сепсис с отрицательными культурами: на перекрестке между эффективным лечением сепсиса и стратегией антибактериальной терапии. Неонатология: новости, мнения, обучение. 2020;8(27): 95–106. https://doi.org/10.3389/fped.2018.00285.

12. Califf R.M. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018;243(3):213–221. https://doi.org/10.1177/1535370217750088.

13. Дон Е.С., Тарасов А.В., Эпштейн О.И., Тарасов С.А. Биомаркеры в медицине: поиск, выбор, изучение и валидация. Клиническая лабораторная диагностика. 2017;62(1):52–59. https://doi.org/10.18821/0869-2084-2017-62-1-52-59.

14. Slaats J., Ten Oever J., van de Veerdonk F.L., Netea M.G. IL-1 / IL-6/CRP and IL-18/ferritin: Distinct Inflammatory Programs in Infections. PLoS Pathog. 2016;15(12):e1005973. https://doi.org/10.1371/journal.ppat.1005973.

15. Markozannes G., Koutsioumpa C., Cividini S., Monori G., Tsilidis K.K., Kretsavos N. et al. Global assessment of C-reactive protein and health-related outcomes: an umbrella review of evidence from observational studies and Mendelian randomization studies. Eur J Epidemiol. 2021;36(1):11–36. https://doi.org/10.1007/s10654-020-00681-w.

16. Du Clos T.W. Pentraxins: structure, function, and role in inflammation. ISRN Inflamm. 2013;2013:379040. https://doi.org/10.1155/2013/379040.

17. Stancel N., Chen C.C., Ke L.Y., Chu C.-S., Lu J., Sawamura T., Chen C.-H. Interplay between CRP, Atherogenic LDL, and LOX1 and Its Potential Role in the Pathogenesis of Atherosclerosis. Clin Chem. 2016;62(2):320–327. https://doi.org/10.1373/clinchem.2015.243923.

18. Уткина Е.А., Афанасьева О.И., Покровский С.Н. С-реактивный белок: патогенетические свойства и возможная терапевтическая мишень. Российский кардиологический журнал. 2021;26(6):4138. https://doi.org/10.15829/1560-4071-2021-4138.

19. Caprio V., Badimon L., Di Napoli M., Fang W.-H., Ferris G.R., Guo B. et al. pCRP-mCRP Dissociation Mechanisms as Potential Targets for the Development of Small-Molecule AntiInflammatory Chemotherapeutics. Front Immunol. 2018;9:1089. https://doi.org/10.3389/fimmu.2018.01089.

20. Полевщиков А.В., Назаров П.Г. Иммунология белков острой фазы воспаления и работы Р.В. Петрова. Иммунология. 2020;41(2):167–173. https://doi.org/10.33029/0206-4952-2020-41-2-167-173.

21. McFadyen J.D., Kiefer J., Braig D., Loseff-Silver J., Potempa L.A., Eisenhardt S.U., Peter K. Dissociation of C-Reactive Protein Localizes and Amplifies Inflammation: Evidence for a Direct Biological Role of C-Reactive Protein and Its Conformational Changes. Front Immunol. 2018;9:1351. https://doi.org/10.3389/fimmu.2018.01351.

22. Pathak A., Agrawal A. Evolution of C-Reactive Protein. Front Immunol. 2019;10:943. https://doi.org/10.3389/fimmu.2019.00943.

23. Мельников И.С., Козлов С.Г., Чумаченко П.В., Сабурова О.С., Гусева О.А., Прокофьева Л.В., Габбасов З.А. Мономерный C-реактивный белок и локальная воспалительная реакция в стенке коронарных артерий у больных стабильной ишемической болезнью сердца. Российский кардиологический журнал. 2019;24(5):56–61. https://doi.org/10.15829/1560-4071-2019-5-56-61.

24. Potempa L.A., Rajab I.M., Olson M.E., Hart P.C. C-Reactive Protein and Cancer: Interpreting the Differential Bioactivities of Its Pentameric and Monomeric, Modified Isoforms. Front Immunol. 2021;12:744129. https://doi.org/10.3389/fimmu.2021.744129.

25. Wan B.N., Zhou S.G., Wang M., Zhang X., Ji G. Progress on haptoglobin and metabolic diseases. World J Diabetes. 2021;12(3):206–214. https://doi.org/10.4239/wjd.v12.i3.206.

26. Liang W., Ferrara N. Iron Metabolism in the Tumor Microenvironment: Contributions of Innate Immune Cells. Front Immunol. 2021;11:626812. https://doi.org/10.3389/fimmu.2020.626812.

27. Нарыжный С.Н., Легина О.К. Гаптоглобин как биомаркер. Биомедицинская химия. 2021;67(2):105–118. https://doi.org/10.18097/PBMC20216702105.

28. Memar M.Y., Alizadeh N., Varshochi M., Kafil H.S. Immunologic biomarkers for diagnostic of early-onset neonatal sepsis. J Matern Fetal Neonatal Med. 2019;32(1):143–153. https://doi.org/10.1080/14767058.2017.1366984.

29. Каргальцева Н.М., Кочеровец В.И., Миронов А.Ю., Борисова О.Ю., Бурбелло А.Т. Маркеры воспаления и инфекция кровотока (oбзор литературы). Клиническая лабораторная диагностика. 2019;64(7):435–442. https://doi.org/10.18821/0869-2084-2019-64-7-435-442.

30. Van der Mark V.A., Ghiboub M., Marsman C., Zhao J., van Dijk R., Hiralall J.K. et al. Erratum to: Phospholipid flippases attenuate LPS-induced TLR4 signaling by mediating endocytic retrieval of Toll-like receptor 4. Cell Mol Life Sci. 2017;74(7):1365. https://doi.org/10.1007/s00018-017-2475-3.

31. Pugni L., Pietrasanta C., Milani S., Vener C., Ronchi A., Falbo M., Arghittu M., Mosca F. Presepsin (Soluble CD14 Subtype): Reference Ranges of a New Sepsis Marker in Term and Preterm Neonates. PLoS ONE. 2015;10(12):e0146020. https://doi.org/10.1371/journal.pone.0146020.

32. Leli C., Ferranti M., Marrano U., Al Dhahab Z.S., Bozza S., Cenci E., Mencacci A. Diagnostic accuracy of presepsin (sCD14-ST) and procalcitonin for prediction of bacteraemia and bacterial DNAaemia in patients with suspected sepsis. J Med Microbiol. 2016;65(8):713–719. https://doi.org/10.1099/jmm.0.000278.

33. Wu C.C., Lan H.M., Han S.T., Chaou C.H., Yeh C.F., Liu S.H. et al. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: a systematic review and meta-analysis. Ann Intensive Care. 2017;7(1):91. https://doi.org/10.1186/s13613-017-0316-z.

34. Memar M.Y., Baghi H.B. Presepsin: A promising biomarker for the detection of bacterial infections. Biomedicine and Pharmacotherapy. 2019;111:649–656. https://doi.org/10.1016/j.biopha.2018.12.124.

35. Masson S., Caironi P., Fanizza C., Thomae R., Bernasconi R., Noto A. et al. Circulating presepsin (soluble CD14 subtype) as a marker of host response in patients with severe sepsis or septic shock: data from the multicenter, randomized ALBIOS trial. Intensive Care Med. 2015;41(1):12–20. https://doi.org/10.1007/s00134-014-3514-2.

36. Memar M.Y., Ghotaslou R., Samiei M., Adibkia K. Antimicrobial use of reactive oxygen therapy: current insights. Infect Drug Resist. 2018;11:567–576. https://doi.org/10.2147/IDR.S142397.

37. Zou Q., Wen W., Zhang X.C. Presepsin as a novel sepsis biomarker. World J Emerg Med. 2014;5(1):16–19. https://doi.org/10.5847/wjem.j.issn.1920-8642.2014.01.002.

38. Wu J., Hu L., Zhang G., Wu F., He T. Accuracy of Presepsin in Sepsis Diagnosis: A Systematic Review and Meta-Analysis. PLoS ONE. 2015;10(7):e0133057. https://doi.org/10.1371/journal.pone.0133057.

39. Zhang J., Hu Z.D., Song J., Shao J. Diagnostic Value of Presepsin for Sepsis: A Systematic Review and MetaAnalysis. Medicine (Baltimore). 2015;94(47):e2158. https://doi.org/10.1097/MD.0000000000002158.

40. Godnic M., Stubljar D., Skvarc M., Jukic T. Diagnostic and prognostic value of sCD14-ST – presepsin for patients admitted to hospital intensive care unit (ICU). Wien Klin Wochenschr. 2015;127(13–14):521–527. https://doi.org/10.1007/s00508-015-0719-5.

41. Memar M.Y., Varshochi M., Shokouhi B., Asgharzadeh M., Kafil H.S. Procalcitonin: The marker of pediatric bacterial infection. Biomed Pharmacother. 2017;96:936–943. https://doi.org/10.1016/j.biopha.2017.11.149.

42. Leli C., Ferranti M., Marrano U., Al Dhahab Z.S., Bozza S., Cenci E., Mencacci A. Diagnostic accuracy of presepsin (sCD14-ST) and procalcitonin for prediction of bacteraemia and bacterial DNAaemia in patients with suspected sepsis. J Med Microbiol. 2016;65(8):713–719. https://doi.org/10.1099/jmm.0.000278.

43. Topcuoglu S., Arslanbuga C., Gursoy T., Aktas A., Karatekin G. Uluhan R., Ovali F. Role of presepsin in the diagnosis oflateonset neonatal sepsis in preterm infants. J Matern Fetal Neonatal Med. 2016;29(11):1834–1839. https://doi.org/10.3109/14767058.2015.1064885.

44. Iskandar A., Arthamin M.Z., Indriana K., Anshory M., Hur M., Di Somma S. Comparison between presepsin and procalcitonin in early diagnosis of neonatal sepsis. J Matern Fetal Neonatal Med. 2019;32(23):3903–3908. https://doi.org/10.1080/14767058.2018.1475643.

45. Awasthi S. Can Estimation of Presepsin Levels in Endotracheal Aspirate Predict Early Onset Pneumonia in Newborns? Indian J Pediatr. 2018;85(11):954. https://doi.org/10.1007/s12098-018-2764-3.

46. Kumar N., Dayal R., Singh P., Pathak S., Pooniya V., Goyal A. A Comparative Evaluation of Presepsin with Procalcitonin and CRP in Diagnosing Neonatal Sepsis. Indian J Pediatr. 2019;86(2):177–179. https://doi.org/10.1007/s12098-018-2659-3.

47. Baraka A., Zakaria M. Presepsin as a diagnostic marker of bacterial infections in febrile neutropenic pediatric patients with hematological malignancies. Int J Hematol. 2018;108(2):184–191. https://doi.org/10.1007/s12185-018-2447-x.

48. Maddaloni C., De Rose D.U., Santisi A., Martini L., Caoci S., Bersani I. et al. The Emerging Role of Presepsin (P-SEP) in the Diagnosis of Sepsis in the Critically Ill Infant: A Literature Review. Int J Mol Sci. 2021;22:12154. https://doi.org/10.3390/ijms222212154.

49. Plesko M., Suvada J., Makohusova M., Waczulikova I., Behulova D., Vasilenkova A. et al. The role of CRP, PCT, IL-6 and presepsin in early diagnosis of bacterial infectious complications in paediatric haemato-oncological patients. Neoplasma. 2016;63(5):752–760. https://doi.org/10.4149/neo_2016_512.

50. Yoon S.H., Kim E.H., Kim H.Y., Ahn J.G. Presepsin as a diagnostic marker of sepsis in children and adolescents: a systemic review and meta-analysis. BMC Infect Dis. 2019;19(1):760. https://doi.org/10.1186/s12879-019-4397-1.

51. Ozdemir A.A., Elgormus Y. Diagnostic Value of Presepsin in Detection of Early-Onset Neonatal Sepsis. Am J Perinatol. 2017;34(6):550–556. https://doi.org/10.1055/s-0036-1593851.

52. Kumar N., Dayal R., Singh P., Pathak S., Pooniya V., Goyal A., Kamal R., Mohanty K.K. A Comparative Evaluation of Presepsin with Procalcitonin and CRP in Diagnosing Neonatal Sepsis. Indian J Pediatr. 2019;86(2):177–179. https://doi.org/10.1007/s12098-018-2659-3.

53. Wolf T.A., Wimalawansa S.J., Razzaque M.S. Procalcitonin as a biomarker for critically ill patients with sepsis: Effects of vitamin D supplementation. J Steroid Biochem Mol Biol. 2019;193:105428. https://doi.org/10.1016/j.jsbmb.2019.105428.

54. Nanno S., Koh H., Katayama T., Hashiba M., Sato A., Makuuchi Y. et al. Okamura, Plasma levels of presepsin (soluble cd14- subtype) as a novel prognostic marker for hemophagocytic syndrome in hematological malignancies. Intern Med. 2016;55(16):2173–2184. https://doi.org/10.2169/internalmedicine.55.6524.

55. Saito J., Hashiba E., Kushikata T., Mikami A., Hirota K. Changes in presepsin concentrations in surgical patients with end-stage kidney disease undergoing living kidney transplantation: a pilot study. J Anesth. 2016;30(1):174–177. https://doi.org/10.1007/s00540-015-2065-1.

56. Pieters M., Wolberg A.S. Fibrinogen and fibrin: An illustrated review. Res Pract Thromb Haemost. 2019;3(2):161-172. https://doi.org/10.1002/rth2.12191.

57. Neerman-Arbez M., Casini A. Clinical Consequences and Molecular Bases of Low Fibrinogen Levels. Int J Mol Sci. 2018;19(1):192. https://doi.org/10.3390/ijms19010192.

58. Butera D., Hogg P.J. Fibrinogen function achieved through multiple covalent states. Nat Commun. 2020;11(1):5468. https://doi.org/10.1038/s41467-020-19295-7.

59. Vilar R., Fish R.J., Casini A., Neerman-Arbez M. Fibrin(ogen) in human disease: both friend and foe. Haematologica. 2020;105(2):284–296. https://doi.org/10.3324/haematol.2019.236901.

60. Luyendyk J.P., Schoenecker J.G., Flick M.J. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 2019;133(6):511–520. https://doi.org/10.1182/blood-2018-07-818211.

61. Sulimai N., Lominadze D. Fibrinogen and Neuroinflammation During Traumatic Brain Injury. Molecular Neurobiology. 2020;57(11):4692– 4703. https://doi.org/10.1007/s12035-020-02012-2.

62. Surma S., Banach M. Fibrinogen and Atherosclerotic Cardiovascular Diseases-Review of the Literature and Clinical Studies. Int J Mol Sci. 2021;23(1):193. https://doi.org/10.3390/ijms23010193.

63. Авербах М.М., Панова Л.В., Овсянкина Е.С., Хитева А.Ю. Роль сывороточного амилоида А и С-реактивного белка в прогнозировании послеоперационных осложнений и обострения туберкулезного процесса после хирургического вмешательства у детей старшего возраста и подростков. Иммунология. 2020;41(4):337–343. https://doi.org/10.33029/0206-4952-2020-41-4-337-343.

64. Sack G.H.Jr. Serum amyloid A — a review. Mol Med. 2018;24(1):46. https://doi.org/10.1186/s10020-018-0047-0.

65. Lu J., Yu Y., Zhu I., Cheng Y., Sun P.D. Structural mechanism of serum amyloid A-mediated inflammatory amyloidosis. Proc Natl Acad Sci U S A. 2014;111(14):5189–5194. https://doi.org/10.1073/pnas.1322357111.

66. Sun L., Zhou H., Zhu Z., Yan Q., Wang L., Liang Q., Ye R.D. Ex vivo and in vitro effect of serum amyloid a in the induction of macrophage M2 markers and efferocytosis of apoptotic neutrophils. J Immunol. 2015;194(10):4891–4900. https://doi.org/10.4049/jimmunol.1402164.

67. Mayer F.J., Binder C.J., Krychtiuk K.A., Schillinger M., Minar E., Hoke M. The prognostic value of serum amyloid A forlong-term mortality among patients with subclinical carotid atherosclerosis. Eur J Clin Invest. 2019;49(6):e13095. https://doi.org/10.1111/eci.13095.

68. Wilson P.G., Thompson J.C., Shridas P., McNamara P.J., de Beer M.C., de Beer F.C. et al. Serum Amyloid A Is an Exchangeable Apolipoprotein. Arterioscler Thromb Vasc Biol. 2018;38(8):1890–1900. https://doi.org/10.1161/ATVBAHA.118.310979.

69. Frame N.M., Gursky O. Structure of serum amyloid A suggests a mechanism for selective lipoprotein binding and functions: SAA as a hub in macromolecular interaction networks. FEBS Lett. 2016;590(6):866–879. https://doi.org/10.1002/1873-3468.12116.

70. Han C.Y., Tang C., Guevara M.E., Wei H., Wietecha T., Shao B. et al. Serum amyloid A impairs the antiinflammatory propertie of HDL. J Clin Invest. 2016;126(1):266–281. https://doi.org/10.1172/JCI83475.

71. Schuchardt M., Prüfer N., Tu Y., Herrmann J., Hu X.-P., Chebli S. et al. Dysfunctional high-density lipoprotein activates toll-like receptors via serum amyloid A in vascular smooth muscle cells. Sci Rep. 2019;9(1):3421. https://doi.org/10.1038/s41598-019-39846-3.

72. Swertfeger D.K., Rebholz S., Li H., Shah A.S., Davidson W.S., Lu L.J. Feasibility of a plasma bioassay to assess oxidative protection oflow-density lipoproteins by high-density lipoproteins. J Clin Lipidol. 2018;12(6):1539–1548. https://doi.org/10.1016/j.jacl.2018.08.007.

73. Jayaraman S., Haupt C., Gursky O. Paradoxical effects of SAA on lipoprotein oxidation suggest a new antioxidant function for SAA. J Lipid Res. 2016;57(12):2138–2149. https://doi.org/10.1194/jlr.M071191.

74. Sato M., Ohkawa R., Yoshimoto A., Yano K., Ichimura N., Nishimori M. et al. Effects of serum amyloid A on the structure and antioxidant ability of high-density lipoprotein. Biosci Rep. 2016;36(4):e00369. https://doi.org/10.1042/BSR20160075.

75. Webb N.R. High-Density Lipoproteins and Serum Amyloid A (SAA). Curr Atheroscler Rep. 2021;23(2):7. https://doi.org/10.1007/s11883-020-00901-4.

76. Wilson P.G., Thompson J.C., Shridas P., McNamara P.J., de Beer M.C., de Beer F.C. et al. Serum Amyloid A Is an Exchangeable Apolipoprotein. Arterioscler Thromb Vasc Biol. 2018;38(8):1890–1900. https://doi.org/10.1161/ATVBAHA.118.310979.

77. Zheng A., Widmann C. The interplay between serum amyloid A and HDLs. Curr Opin Lipidol. 2020;31(5):300–301. https://doi.org/10.1097/MOL.0000000000000702.

78. Gonçalves C.A., Sesterheim P. Serum amyloid A protein has been undervalued as a biomarker of COVID-19. Diabetes Metab Res Rev. 2021;37(1):e3376. https://doi.org/10.1002/dmrr.3376.

79. Li H., Xiang X., Ren H., Hui L., Qiang W., Qingming W. et al. Serum Amyloid A is a biomarker of severe Coronavirus Disease and poor prognosis. J Infect. 2020;80(6):646–655. https://doi.org/10.1016/j.jinf.2020.03.035.

80. Schartz N.D., Tenner A.J. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation. 2020;17(1):354. https://doi.org/10.1186/s12974-020-02024-8.

81. Сердобинцев К.В. Система комплемента (часть 1). Аллергология и иммунология в педиатрии. 2016;2(45):41–48. https://doi.org/10.24411/2500-1175-2016-00013.

82. Shah A., Kishore U., Shastri A. Complement System in Alzheimer’s Disease. Int J Mol Sci. 2021;22(24):13647. https://doi.org/10.3390/ijms222413647.

83. Mortensen S.A., Sander B., Jensen R.K., Pedersen J.S., Golas M.M., Jensenius J.C. et al. Structure and activation of C1, the complex initiating the classical pathway of the complement cascade. Proc Natl Acad Sci U S A. 2017;114(5):986–991. https://doi.org/10.1073/pnas.1616998114.

84. Kleczko E.K., Kwak J.W., Schenk E.L., Nemenoff R.A. Targeting the Complement Pathway as a Therapeutic Strategy in Lung Cancer. Front Immunol. 2019;10:954. https://doi.org/10.3389/fimmu.2019.00954.

85. Lo M.W., Woodruff T.M. Complement: Bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol. 2020;108(1):339–351. https://doi.org/10.1002/JLB.3MIR0220-270R.

86. Fromell K., Adler A., Åman A., Manivel V.A., Huang S., Dührkop C. et al. Assessment of the Role of C3(H2O) in the Alternative Pathway. Front Immunol. 2020;11:530. https://doi.org/10.3389/fimmu.2020.00530.

87. Nan R., Furze C.M., Wright D.W., Gor J., Wallis R., Perkins S.J. Flexibility inMannan-Binding Lectin-Associated Serine Proteases-1 and -2 Provides Insight on Lectin Pathway Activation. Structure. 2017;25(2):364–375. https://doi.org/10.1016/j.str.2016.12.014.

88. Keizer M.P., Aarts C., Kamp A.M., van de Wetering M., Woutersa D., Kuijpers T.W. Asparaginase inhibits thelectin pathway of complement activation. Mol Immunol. 2018;93:189–192. https://doi.org/10.1016/j.molimm.2017.11.027.


Рецензия

Для цитирования:


Морозов А.М., Сергеев А.Н., Жуков С.В., Новикова Н.С., Беляк М.А. Современные маркеры воспалительного процесса в хирургической практике. Амбулаторная хирургия. 2022;19(1):147-156. https://doi.org/10.21518/1995-1477-2022-19-1-147-156

For citation:


Morozov A.M., Sergeev A.N., Zhukov S.V., Novikova N.S., Belyak M.A. Modern markers of inflammatory process in surgical practice. Ambulatornaya khirurgiya = Ambulatory Surgery (Russia). 2022;19(1):147-156. (In Russ.) https://doi.org/10.21518/1995-1477-2022-19-1-147-156

Просмотров: 731


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International.


ISSN 2712-8741 (Print)
ISSN 2782-2591 (Online)