Preview

Ambulatornaya khirurgiya = Ambulatory Surgery (Russia)

Advanced search

Percutaneous laser coagulation of dilated intradermal veins: from theory to practice

https://doi.org/10.21518/akh2023-035

Abstract

Review authors consider the current possibilities of percutaneous laser coagulation for telangiectasias and reticular veins, which are the most common cosmetic defects of vascular genesis, occurring in more than 80% of women of different age groups. This vascular pathology constituting an aesthetic defect and causing local physical discomfort is one of the most common indications for phlebosclerosing therapy and percutaneous laser coagulation. The authors present the most effective and safe guidelines for percutaneous laser coagulation based on analyses of a large volume of specialized literature. Due to the use of state-of-the-art Nd:YAG lasers, percutaneous laser coagulation is increasingly used in patients with various types of intradermal vein lesions and, owing to high efficiency and safety, has advantages over compression sclerotherapy by several criteria. Nd:YAG lasers can be divided into long- and short-pulse ones according to their technical characteristics. Long-pulse lasers provide coagulation of the target vessel due to a single pulse with a high energy density (fluence), while short-pulse lasers, on the contrary, generate a series of pulses to the target vein with a running time of fractions of a millisecond, which ensures the conversion of hemoglobin into methemoglobin with a ten-fold increased ability to absorb laser energy and convert it to heat. As the duration of the pulses generated by the device is a priori shorter than the thermal relaxation time, the risk of burns to the skin and paravasal structures almost completely disappears. The authors provide clinical examples of the application of Aerolase Neo device that utilizes MicroPulse technology to confirm the effectiveness and safety of shortpulse Nd:YAG lasers.

About the Authors

V. Yu. Bogachev
Pirogov Russian National Research Medical University; First Phlebological Center
Russian Federation

Vadim Yu. Bogachev, Dr. Sci. (Med.), Professor of the Department of Faculty Surgery No. 2; Scientific Supervisor 

1, Ostrovityanov St., Moscow, 117997;
31, Dmitry Ulyanov St., Moscow, 117447



H. P. Manjikian
Eramishantsev Moscow State Hospital; Vishnevsky National Medical Research Center of Surgery
Russian Federation

Hovsep P. Manjikian, Cardio-Vascular Surgeon, Head of Vein Clinic; Applicant 

15, Lenskaya St., Moscow, 129327;
27, Bolshaya Serpukhovskaya St., Moscow, 117997



O. A. Alukhanyan
Kuban State Medical University
Russian Federation

Ovik A. Alukhanyan, Dr. Sci. (Med.), Professor of the Department of Cardiac Surgery and Cardiology, Faculty of Vocational Education and Professional Retraining of Specialists 

4, Mitrofan Sedin St., Krasnodar, 350063



References

1. Ruckley CV, Evans CJ, Allan PL, Lee AJ, Fowkes FGR. Telangiectasia in the Edinburgh Vein Study: epidemiology and association with trunk varices and symptoms. Eur J Vasc Endovasc Surg. 2008;36(6):719–724. https://doi.org/10.1016/j.ejvs.2008.08.012.

2. Rabe E, Guex JJ, Puskas A, Scuderi A, Fernandez Quesada F. Epidemiology of chronic venous disorders in geographically diverse populations: results from the Vein Consult Program. Int Angiol. 2012;31(2):105–115. Available at: https://www.minervamedica.it/en/journals/international-angiology/article.php?cod=R34Y2012N02A0105.

3. Rabe E, Berboth G, Pannier F. Epidemiologie der chronischen Venenkrankheiten. Wien Med Wochenschr. 2016;166(9-10):260–263. https://doi.org/10.1007/s10354-016-0465-y.

4. Salim S, Machin M, Patterson BO, Onida S, Davies AH. Global epidemiology of chronic venous disease: a systematic review with pooled prevalence analysis. Ann Surg. 2021;274(6):971–976. https://doi.org/10.1097/SLA.0000000000004631.

5. Perrin M, Eklof B, Van Rij A, Labropoulos N, Vasquez M, Nicolaides A et al. Venous symptoms: the SYM Vein Consensus statement developed under the auspices of the European Venous Forum. Int Angiol. 2016;35(4):374–398. Available at: https://www.minervamedica.it/en/journals/international-angiology/article.php?cod=R34Y2016N04A0374.

6. Gibson K, Gunderson K. Liquid and Foam Sclerotherapy for Spider and Varicose Veins. Surg Clin North Am. 2018;98(2):415–429. https://doi.org/10.1016/j.suc.2017.11.010.

7. Rabe E, Breu FX, Cavezzi A, Smith PC, Frullini A, Gillet JL et al. European guidelines for sclerotherapy in chronic venous disorders. Phlebology. 2014;29(6):338–354. https://doi.org/10.1177/0268355513483280.

8. Weiss MA, Hsu JTS, Neuhaus I, Sadick NS, Duffy DM. Consensus for sclerotherapy. Dermatol Surg. 2014;40(12):1309–1318. https://doi.org/10.1097/DSS.0000000000000225.

9. Gianesini S, Obi A, Onida S, Baccellieri D, Bissacco D, Borsuk D et al. Global guidelines trends and controversies in lower limb venous and lymphatic disease: Narrative literature revision and experts’ opinions following the vWINter international meeting in Phlebology, Lymphology & Aesthetics, 23–25 January 2019. Phlebology. 2019;34(Suppl. 1):4–66. https://doi.org/10.1177/0268355519870690.

10. Bertanha M, Jaldin RG, Moura R, Pimenta REF, Mariúba JVO, Lúcio Filho CEP et al. Sclerotherapy for Reticular Veins in the Lower Limbs: A Triple-Blind Randomized Clinical Trial. JAMA Dermatol. 2017;153(12):1249–1255. https://doi.org/10.1001/jamadermatol.2017.3426.

11. Parlar B, Blazek C, Cazzaniga S, Naldi L, Kloetgen HW, Borradori L et al. Treatment of lower extremity telangiectasias in women by foam sclerotherapy vs. Nd:YAG laser: a prospective, comparative, randomized, open-label trial. J Eur Acad Dermatol Venereol. 2015;29(3):549–554. https://doi.org/10.1111/jdv.12627.

12. Meesters AA, Pitassi LHU, Campos V, Wolkerstorfer A, Dierickx CC. Transcutaneous laser treatment of leg veins. Lasers Med Sci. 2014;29(2):481–492. https://doi.org/10.1007/s10103-013-1483-2.

13. Nakano LC, Cacione DG, Baptista-Silva JC, Flumignan RL. Treatment for telangiectasias and reticular veins. Cochrane Database Syst Rev. 2021;10(10):CD012723. https://doi.org/10.1002/14651858.CD012723.pub2.

14. Munavalli GS, Weiss RA. Complications of sclerotherapy. Semin Cutan Med Surg. 2007;26(1):22–28. https://doi.org/10.1016/j.sder.2006.12.009.

15. Cavezzi A, Parsi K. Complications of foam sclerotherapy. Phlebology. 2012;27(Suppl. 1):462–51. https://doi.org/10.1258/phleb.2012.012s09.

16. Bogachev VYu, Boldin BV, Alukhanyan OA, Turkin PYu, Lobanov VN. Hyperpigmentation after sclerotherapy: modern possibilities for prevention and treatment. Ambulatornaya Khirurgiya. 2023;20(1):81–93. (In Russ.) https://doi.org/10.21518/akh2023-012.

17. Weiss RA, Weiss MA. Early clinical results with a multiple synchronized pulse 1064 NM laser for leg telangiectasias and reticular veins. Dermatol Surg. 1999;25(5):399–402. https://doi.org/10.1046/j.1524-4725.1999.08268.x.

18. Kunishige JH, Goldberg LH, Friedman PM. Laser therapy for leg veins. Clin Dermatol. 2007;25(5):454–461. https://doi.org/10.1016/j.clindermatol.2007.05.008.

19. Adamič M, Pavlović MD, Troilius Rubin A, Palmetun-Ekbäck M, Boixeda P. Guidelines of care for vascular lasers and intense pulse light sources from the European Society for Laser Dermatology. J Eur Acad Dermatol Venereol. 2015;29(9):1661–1678. https://doi.org/10.1111/jdv.13177.

20. Alster TS, Khoury RR. Treatment of laser complications. Facial Plast Surg. 2009;25(5):316–323. https://doi.org/10.1055/s-0029-1243080.

21. Hirsch R. Iatrogenic laser complications. Clin Dermatol. 2011;29(6):691–695. https://doi.org/10.1016/j.clindermatol.2011.08.010.

22. Alam M, Warycha M. Complications of lasers and light treatments. Dermatol Ther. 2011;24(6):571–580. https://doi.org/10.1111/j.1529-8019.2012.01476.x.

23. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220(4596):524–527. https://doi.org/10.1126/science.6836297.

24. Parrish JA, Anderson RR, Harrist T, Paul B, Murphy GF. Selective thermal effects with pulsed irradiation from lasers: from organ to organelle. J Invest Dermatol. 1983;80(Suppl. 1):75s–80s. https://doi.org/10.1038/jid.1983.19.

25. Altshuler GB, Anderson RR, Manstein D, Zenzie HH, Smirnov MZ. Extended theory of selective photothermolysis. Lasers Surg Med. 2001;29(5):416–432. https://doi.org/10.1002/lsm.1136.

26. Bogachev VYu, Rosukhovski DA, Borsuk DA, Shonov OA, Manjikian HP, Lobastov KV et al. Russian clinical practice guidelines for the management of C1 clinical class of chronic venous disorders (reticular veins and telangiectasias). Ambulatornaya Khirurgiya. 2020; (3-4):140–206. (In Russ.) https://doi.org/10.21518/18/1995-1477-2020-3-4-140-206.

27. Braverman IM. The cutaneous microcirculation. J Investig Dermatol Symp Proc. 2000;5(1):3–9. https://doi.org/10.1046/j.1087-0024.2000.00010.x.

28. Braverman IM, Keh-Yen A. Ultrastructure of the human dermal microcirculation. IV. Valve-containing collecting veins at the dermalsubcutaneous junction. J Invest Dermatol. 1983;81(5):438–442. https://doi.org/10.1111/1523-1747.ep12522612.

29. Somjen GM. Anatomy of the superficial venous system. Dermatol Surg. 1995;21(1):35–45. https://doi.org/10.1111/j.1524-4725.1995.tb00109.x.

30. Mariani F, Bianchi V, Mancini S, Mancini S. Telangiectases in Venous Insufficiency: Point of Reflux and Treatment Strategy. Phlebology. 2000;15(1):38–42. https://doi.org/10.1177/026835550001500107.

31. Imanishi N, Kishi K, Chang H, Nakajima H, Aiso S. Three-dimensional venous anatomy of the dermis observed using stereography. J Anat. 2008;212(5):669–673. https://doi.org/10.1111/j.1469-7580.2008.00890.x.

32. Green D. Reticular veins, incompetent reticular veins, and their relationship to telangiectases. Dermatol Surg. 1998;24(10):1129–1140. https://doi.org/10.1111/j.1524-4725.1998.tb04086.x.

33. Kern P. Pathophysiology of telangiectasias of the lower legs and its therapeutic implication: A systematic review. Phlebology. 2018;33(4):225–233. https://doi.org/10.1177/0268355518756480.

34. Bäumler W, Ulrich H, Hartl A, Landthaler M, Shafirstein G. Optimal parameters for the treatment of leg veins using Nd:YAG lasers at 1064 nm. Br J Dermatol. 2006;155(2):364–371. https://doi.org/10.1111/j.1365-2133.2006.07314.x.

35. Farkas JP, Hoopman JE, Kenkel JM. Five parameters you must understand to master control of your laser/light-based devices. Aesthet Surg J. 2013;33(7):1059–1064. https://doi.org/10.1177/1090820X13501174.

36. Ross V, Domankevitz Y. Laser leg vein treatment: a brief overview. J Cosmet Laser Ther. 2003;5(3-4):192–197. https://doi.org/10.1080/14764170310021878.

37. Ross EV, Domankevitz Y. Laser treatment of leg veins: Physical mechanisms and theoretical considerations. Lasers Surg Med. 2005;36(2):105–116. https://doi.org/10.1002/lsm.20141.

38. Srinivas CR, Kumaresan M. Lasers for vascular lesions: standard guidelines of care. Indian J Dermatol Venereol Leprol. 2011;77(3):349–368. https://doi.org/10.4103/0378-6323.79728.

39. McDaniel DH, Ash K, Lord J, Newman J, Adrian RM, Zukowski M. Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser. Dermatol Surg. 1999;25(1):52–58. https://doi.org/10.1046/j.1524-4725.1999.08117.x.

40. McCoppin HH, Hovenic WW, Wheeland RG. Laser treatment of superficial leg veins: a review. Dermatol Surg. 2011;37(6):729–741. https://doi.org/10.1111/j.1524-4725.2011.01990.x.

41. Hsia J, Lowery JA, Zelickson B. Treatment of leg telangiectasia using a long-pulse dye laser at 595 nm. Lasers Surg Med. 1997;20(1):1–5. https://doi.org/10.1002/(sici)1096-9101(1997)20:1<1::aid-lsm1>3.0.co;2-u.

42. West TB, Alster TS. Comparison of the long-pulse dye (590–595 nm) and KTP (532 nm) lasers in the treatment of facial and leg telangiectasias. Dermatol Surg. 1998;24(2):221–226. https://doi.org/10.1111/j.1524-4725.1998.tb04140.x.

43. Bernstein EF, Lee J, Lowery J, Brown DB, Geronemus R, Lask G, Hsia J. Treatment of spider veins with the 595 nm pulsed-dye laser. J Am Acad Dermatol. 1998;39(5):746–750. https://doi.org/10.1016/s0190-9622(98)70047-7.

44. Fournier N, Brisot D, Mordon S. Treatment of leg telangiectases with a 532 nm KTP laser in multipulse mode. Dermatol Surg. 2002;28(7):564–571. https://doi.org/10.1046/j.1524-4725.2002.01316.x.

45. Reichert D. Evaluation of the long-pulse dye laser for the treatment of leg telangiectasias. Dermatol Surg. 1998;24(7):737–740. https://doi.org/10.1111/j.15244725.1998.tb04242.x.

46. Buscher BA, McMeekin TO, Goodwin D. Treatment of leg telangiectasia by using a long-pulse dye laser at 595 nm with and without dynamic cooling device. Lasers Surg Med. 2000;27(2):171–175. https://doi.org/10.1002/1096-9101(2000)27:2<171::aid-lsm9>3.0.co;2-v.

47. Woo WK, Jasim ZF, Handley JM. 532-nm Nd:YAG and 595-nm pulsed dye laser treatment of leg telangiectasia using ultralong pulse duration. Dermatol Surg. 2003;29(12):1176–1180. https://doi.org/10.1111/j.1524-4725.2003.29383.x.

48. Garden JM, Tan OT, Kerschmann R, Boll J, Furumoto H, Anderson RR, Parrish JA. Effect of dye laser pulse duration on selective cutaneous vascular injury. J Invest Dermatol. 1986;87(5):653–657. https://doi.org/10.1111/1523-1747.ep12456368.

49. Kauvar ANB, Khrom T. Laser treatment of leg veins. Semin Cutan Med Surg. 2005;24(4):184–192. https://doi.org/10.1016/j.sder.2005.10.003.

50. Parlette EC, Groff WF, Kinshella MJ, Domankevitz Y, O’Neill J, Ross EV. Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser. Lasers Surg Med. 2006;38(2):98–105. https://doi.org/10.1002/lsm.20245.

51. Weiss RA, Weiss MA, Beasley KL. Sclerotherapy and Vein Treatment. 2nd ed. McCraw-Hill Professional; 2012. 248 p. Available at: https://dermatology.mhmedical.com/book.aspx?bookID=2822.

52. Christiansen K, Drosner M, Bjerring P. Optimized settings for Nd:YAG laser treatments of leg telangiectasias. J Cosmet Laser Ther. 2015;17(2):69–76. https://doi.org/10.3109/14764172.2014.988729.

53. Kono T, Yamaki T, Erçöçen AR, Fujiwara O, Nozaki M. Treatment of leg veins with the long pulse dye laser using variable pulse durations and energy fluences. Lasers Surg Med. 2004;35(1):62–67. https://doi.org/10.1002/lsm.20035.

54. Ozyurt K, Colgecen E, Baykan H, Ozturk P, Ozkose M. Treatment of superficial cutaneous vascular lesions: experience with the long-pulsed 1064 nm Nd:YAG laser. Scientific World Journal. 2012:197139. https://doi.org/10.1100/2012/197139.

55. Минаев ВП. Лазерные медицинские системы и медицинские технологии на их основе. 4-е изд. М.: Интеллект; 2020. 360 с.

56. Hruza GJ, Tanzi EL. Lasers and Lights. 4th ed. Elsevier; 2018. 180 p.

57. Gloviczki P, Dalsing MC, Eklof B, Gloviczki ML, Lurie F, Wakefield TW (eds.). Handbook of Venous and Lymphatic Disorders: Guidelines of the American Venous Forum. 4th ed. Boca Raton: CRC Press; 2017. 48 p. https://doi.org/10.1201/9781315382449.

58. Goldman MP, Weiss RA. Sclerotherapy. 6th ed. Elsevier; 2016. 448 p.

59. Bolognia JL, Schaffer JV, Cerroni L. Dermatology. 4th ed. Elsevier; 2017. 2880 p.

60. De Maeseneer MG, Kakkos SK, Aherne T, Baekgaard N, Black S, Blomgren L et al. Editor’s Choice – European Society for Vascular Surgery (ESVS) 2022 Clinical Practice Guidelines on the Management of Chronic Venous Disease of the Lower Limbs. Eur J Vasc Endovasc Surg. 2022;63(2):184–267. https://doi.org/10.1016/j.ejvs.2021.12.024.

61. Kauvar AN, Lou WW. Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins. Arch Dermatol. 2000;136(11):1371–1375. https://doi.org/10.1001/archderm.136.11.1371.

62. Brunnberg S, Lorenz S, Landthaler M, Hohenleutner U. Evaluation of the long pulsed high fluence alexandrite laser therapy of leg telangiectasia. Lasers Surg Med. 2002;31(5):359–362. https://doi.org/10.1002/lsm.10117.

63. Eremia S, Li C, Umar SH. A side-by-side comparative study of 1064 nm Nd:YAG, 810 nm diode and 755 nm alexandrite lasers for treatment of 0.3–3 mm leg veins. Dermatol Surg. 2002;28(3):224–230. https://doi.org/10.1046/j.1524-4725.2002.01162.x.

64. Passeron T, Olivier V, Duteil L, Desruelles F, Fontas E, Ortonne JP. The new 940-nanometer diode laser: an effective treatment for leg venulectasia. J Am Acad Dermatol. 2003;48(5):768–774. https://doi.org/10.1067/mjd.2003.191.

65. Wollina U, Konrad H, Schmidt WD, Haroske G, Astafeva LG, Fassler D. Response of spider leg veins to pulsed diode laser (810 nm): a clinical, histological and remission spectroscopy study. J Cosmet Laser Ther. 2003;5(3-4):154–162. https://doi.org/10.1080/14764170310017071.

66. Trelles MA, Allones I, Trelles O. An 810 nm diode laser in the treatment of small (< or = 1.0 mm) leg veins: a preliminary assessment. Lasers Med Sci. 2004;19(1):21–26. https://doi.org/10.1007/s10103-004-0295-9.

67. Bernstein EF, Noyaner-Turley A, Renton B. Treatment of spider veins of the lower extremity with a novel 532 nm KTP laser. Lasers Surg Med. 2014;46(2):81–88. https://doi.org/10.1002/lsm.22178.

68. Lupton JR, Alster TS, Romero P. Clinical comparison of sclerotherapy versus long-pulsed Nd:YAG laser treatment for lower extremity telangiectases. Dermatol Surg. 2002;28(8):694–697. https://doi.org/10.1046/j.1524-4725.2002.02029.x.

69. Sadick NS. Laser treatment with a 1064-nm laser for lower extremity class I–III veins employing variable spots and pulse width parameters. Dermatol Surg. 2003;29(9):916–919. https://doi.org/10.1046/j.1524-4725.2003.29250.x.

70. Levy JL, Elbahr C, Jouve E, Mordon S. Comparison and sequential study of long pulsed Nd:YAG 1,064 nm laser and sclerotherapy in leg telangiectasias treatment. Lasers Surg Med. 2004;34(3):273–276. https://doi.org/10.1002/lsm.20010.

71. Munia MA, Wolosker N, Munia CG, Chao WS, Puech-Leão P. Comparison of laser versus sclerotherapy in the treatment of lower extremity telangiectases: a prospective study. Dermatol Surg. 2012;38(4):635–639. https://doi.org/10.1111/j.1524-4725.2011.02226.x.

72. Ianosi G, Ianosi S, Calbureanu-Popescu MX, Tutunaru C, Calina D, Neagoe D. Comparative study in leg telangiectasias treatment with Nd:YAG laser and sclerotherapy. Exp Ther Med. 2019;17(2):1106–1112. https://doi.org/10.3892/etm.2018.6985.

73. Sadick NS. Laser and intense pulsed light therapy for the esthetic treatment of lower extremity veins. Am J Clin Dermatol. 2003;4(8):545–554. https://doi.org/10.2165/00128071-200304080-00004.

74. Shah S, Alster TS. Laser treatment of dark skin: an updated review. Am J Clin Dermatol. 2010;11(6):389–397. https://doi.org/10.2165/11538940-000000000-00000.

75. Weiss RA, Sadick NS. Epidermal cooling crystal collar device for improved results and reduced side effects on leg telangiectasias using intense pulsed light. Dermatol Surg. 2000;26(11):1015–1018. https://doi.org/10.1046/j.1524-4725.2000.0260111015.x.

76. Groot D, Rao J, Johnston P, Nakatsui T. Algorithm for using a long-pulsed Nd:YAG laser in the treatment of deep cutaneous vascular lesions. Dermatol Surg. 2003;29(1):35–42. https://doi.org/10.1046/j.1524-4725.2003.29016.x.

77. Eremia S, Li CY. Treatment of leg and face veins with a cryogen spray variable pulse width 1064-nm Nd:YAG laser – a prospective study of 47 patients. J Cosmet Laser Ther. 2001;3(3):147–153. https://doi.org/10.1080/147641701753414960.

78. Rose AE, Goldberg DJ. Successful treatment of facial telangiectasias using a micropulse 1,064-nm neodymium-doped yttrium aluminum garnet laser. Dermatol Surg. 2013;39(7):1062–1066. https://doi.org/10.1111/dsu.12185

79. Bard S, Goldberg D (eds.). Laser Treatment of Vascular Lesions. Karger; 2014. https://doi.org/10.1159/isbn.978-3-318-02313-8.

80. Rosukhovskiy DA. Comparative Study of Cryo-Laser and Cryo-Sclerotherapy with Microclerotherapy. Flebologiya. 2021;15(3):144–152. (In Russ.) https://doi.org/10.17116/flebo202115031144.


Review

For citations:


Bogachev V.Yu., Manjikian H.P., Alukhanyan O.A. Percutaneous laser coagulation of dilated intradermal veins: from theory to practice. Ambulatornaya khirurgiya = Ambulatory Surgery (Russia). 2023;20(2):17-26. (In Russ.) https://doi.org/10.21518/akh2023-035

Views: 582


ISSN 2712-8741 (Print)
ISSN 2782-2591 (Online)